Advertisement

Applied Physics A

, Volume 90, Issue 3, pp 537–543 | Cite as

Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses

  • A. WeckEmail author
  • T.H.R. Crawford
  • D.S. Wilkinson
  • H.K. Haugen
  • J.S. Preston
Article

Abstract

Deep laser holes were drilled in copper sheets using various pulse lengths and environments. By recording the intensity on a photodiode placed under the sample while drilling the holes, we obtained the number of pulses to drill through the sheet as a function of pulse length and energy. The entrance diameter of the holes was successfully predicted using a Gaussian approximation and a material removal fluence threshold of 0.39 J/cm2 for a pulse length of 150 fs. From cross sections of the holes, the morphology of the inside walls was observed and shows an increase in the amount of molten material with pulse length. A transition pulse length is defined as the point at which the laser affected material goes from being mainly vaporized to mainly melted. This transition occurs near ∼10 ps, which corresponds approximately to the electron–phonon relaxation time for copper.

Keywords

Pulse Energy Pulse Length Molten Material Nanosecond Pulse Laser Drilling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)CrossRefADSGoogle Scholar
  2. 2.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)ADSGoogle Scholar
  3. 3.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)CrossRefADSGoogle Scholar
  4. 4.
    D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150, 101 (1999)CrossRefADSGoogle Scholar
  5. 5.
    T.Q. Jia, Z.Z. Xu, X.X. Li, R.X. Li, B. Shuai, F.L. Zhao, Appl. Phys. Lett. 82, 4382 (2003)CrossRefADSGoogle Scholar
  6. 6.
    L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)CrossRefADSGoogle Scholar
  7. 7.
    S. Juodkazis, H. Okuno, N. Kujime, S. Matsuo, H. Misawa, Appl. Phys. A 79, 1555 (2004)ADSGoogle Scholar
  8. 8.
    H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)CrossRefADSGoogle Scholar
  9. 9.
    A. Luft, U. Franz, A. Emsermann, J. Kaspar, Appl. Phys. A 63, 93 (1996)CrossRefADSGoogle Scholar
  10. 10.
    S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, E. Axente, Appl. Surf. Sci. 248, 299 (2005)CrossRefADSGoogle Scholar
  11. 11.
    P. Solana, P. Kapadia, J. Dowden, W.S.O. Rodden, S.S. Kudesia, D.P. Hand, J.D.C. Jones, Opt. Commun. 191, 97 (2001)CrossRefADSGoogle Scholar
  12. 12.
    N.N. Nedialkov, P.A. Atanasov, Appl. Surf. Sci. 252, 4411 (2006)CrossRefADSGoogle Scholar
  13. 13.
    A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)CrossRefADSGoogle Scholar
  14. 14.
    A. Borowiec, H.K. Haugen, Appl. Phys. A 79, 521 (2004)CrossRefADSGoogle Scholar
  15. 15.
    K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359 (1999)CrossRefADSGoogle Scholar
  16. 16.
    S.E. Kirkwood, A.C. van Popta, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. A 81, 729 (2005)CrossRefADSGoogle Scholar
  17. 17.
    H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)CrossRefADSGoogle Scholar
  18. 18.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)CrossRefADSGoogle Scholar
  19. 19.
    M.M. Murnane, H.C. Kapteyn, M.D. Rosen, R.W. Falcone, Science 251, 531 (1991)CrossRefADSGoogle Scholar
  20. 20.
    S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 77, 2464 (2000)CrossRefADSGoogle Scholar
  21. 21.
    S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 31 (2000)CrossRefADSGoogle Scholar
  22. 22.
    A. Weck, T.H.R. Crawford, D.S. Wilkinson, H.K. Haugen, J.S. Preston, Appl. Phys. A, online first, DOI:10.1007/s00339-007-4203-6 (2007)Google Scholar
  23. 23.
    J. Kleinbauer, R. Knappe, R. Wallenstein, Appl. Phys. B 80, 315 (2005)CrossRefADSGoogle Scholar
  24. 24.
    J. Thøgersen, A. Borowiec, H.K. Haugen, F.E. McNeill, I. M Stronach, Appl. Phys. A 73, 361 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Weck
    • 1
    Email author
  • T.H.R. Crawford
    • 2
  • D.S. Wilkinson
    • 1
  • H.K. Haugen
    • 2
    • 3
  • J.S. Preston
    • 2
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada
  3. 3.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada

Personalised recommendations