Skip to main content
Log in

New approaches for growth control of GaN-based HEMT structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports on new approaches for growth control of GaN-based heterostructures for high frequency and high power application. First in situ methods are presented and their further development discussed [1]. The development leads to a greatly improved observation of growth parameter influences in the MOVPE of GaN. A new growth process is introduced which enhances growth reproducibility [2]. This new growth process is then optimized with respect to the envisaged application. To this end process modeling will be employed. The application envisaged is the AlxGa1-xN/GaN high electron mobility transistor (HEMT). At last device results will be presented. All in all it will be shown how fundamental research can drive technology and how basic knowledge can be employed for process development with respect to device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Steins, N. Kaluza, H. Hardtdegen, M. Zorn, K. Haberland, J.-T. Zettler, J. Cryst. Growth 272, 81 (2004)

    Article  Google Scholar 

  2. H. Hardtdegen, N. Kaluza, R. Steins, R. Schmidt, K. Wirtz, E.V. Yakovlev, R.A. Talalaev, Y.N. Makarov, J. Cryst. Growth 272, 407 (2004)

    Article  Google Scholar 

  3. GaN reproducibility

  4. read for example in http://www.laytec.de

  5. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)

    Article  ADS  Google Scholar 

  6. for example A.E. Wickendon, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E. Twigg, M. Fatemi, J.A. Freitas Jr., W.J. Moore, J. Electron. Mater. 29, 21 (2000)

    Google Scholar 

  7. D.C. Look, J.R. Sizelove, Phys. Rev. Lett. 35, 1380 (1999)

    Google Scholar 

  8. C.R. Kleijn, Chemical Vapor Deposition Processes, in: Computational Modelling in Semiconductor Processing, ed. by M. Meyyappan (Artech House, Boston, 1995), Chapt. 4, pp. 97–230

  9. M.G. Jacko, S.J.M. Price, Can. J. Chem. 41, 1560 (1963)

    Article  Google Scholar 

  10. R.A. Talalaev, E.V. Yakovlev, S.Y. Karpov, Y.N. Makarov, J. Cryst. Growth 223, 21 (2001)

    Article  Google Scholar 

  11. H. Hardtdegen, N. Kaluza, R. Schmidt, R. Steins, E.V. Yakovlev, R.A. Talalaev, Y.N. Makarov, J.-T. Zettler, Phys. Stat. Solidi A 201, 312 (2004)

    Article  ADS  Google Scholar 

  12. H. Hardtdegen, M. Zorn, J.-T. Zettler,Proceedings of the 12th International Workshop on the Physics of Semiconductor Devices, ed. by K.N. Bhat, A. DasGupta (Narosa Publishing House, New Delhi, 2004), pp. 83–89

  13. T. Böttcher, E. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, J.S. Speck, Appl. Phys. Lett. 78, 1976 (2001)

    Article  ADS  Google Scholar 

  14. K. Haberland, A. Kaluza, M. Zorn, M. Pristovesk, H. Hardtdegen, M. Weyers, J.-T. Zettler, W. Richter, J. Cryst. Growth 240, 87 (2002)

    Article  Google Scholar 

  15. F.G. Bobel, A. Wowchak, B. Hertl, J. Van Hove, P.P. Chow, J. Vac. Sci. Technol. B 12, 1207 (1994)

    Article  Google Scholar 

  16. P.J. Timans, J. Appl. Phys. 72, 660 (1992)

    Article  ADS  Google Scholar 

  17. S.R. Balmer, T. Martin, J. Cryst. Growth 48, 216 (2003)

    Article  Google Scholar 

  18. S.R. Johnson, C. Lavoie, T. Tiedje, J.A. Mackenzie, J. Vac. Sci. Technol. B 11, 1007 (1993)

    Article  Google Scholar 

  19. S. Liu, D. Stevenson, J. Electrochem. Soc. 125, 1161 (1978)

    Article  Google Scholar 

  20. M. Kamp, M. Mayer, A. Pelzmann, K. Ebeling, Mater. Res. Soc. Symp. Proc. 449, 161 (1997)

    Google Scholar 

  21. R. Sheknar, K. Jensen, Surf. Sci. 321, 301 (1994)

    Article  Google Scholar 

  22. H. Hardtdegen, N. Kaluza, R. Steins, P. Javorka, K. Wirtz, A. Alam, T. Schmitt, R. Beccard, Phys. Stat. Solidi A 202, 744 (2005)

    Article  ADS  Google Scholar 

  23. D. Dauelsberg, H. Hardtdegen, A. Kaluza, P. Kaufmann, L. Kadinski, J. Cryst. Growth 223, 21 (2001)

    Article  Google Scholar 

  24. H. Hardtdegen, N. Kaluza, R. Steins, Y.S. Cho, Z. Sofer, M. Zorn, K. Haberland, J.-T. Zettler, Phys. Stat. Solidi B 242, 2581 (2005)

    Article  ADS  Google Scholar 

  25. B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kaplonek, B.P. Keller, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996)

    Article  ADS  Google Scholar 

  26. W. Lu, V. Kumar, R. Schwindt, E. Piner, I. Adesida, Solid State Electron. 46, 1441 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hardtdegen.

Additional information

PACS

68.35.Ct; 68.55.Ac; 78.66.Fd; 81.15.Kk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardtdegen, H., Steins, R., Kaluza, N. et al. New approaches for growth control of GaN-based HEMT structures. Appl. Phys. A 87, 491–498 (2007). https://doi.org/10.1007/s00339-007-3933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3933-9

Keywords

Navigation