Skip to main content
Log in

Synthesis of carbon nanotubes with totally hollow channels and/or with totally copper filled nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) with totally hollow channels and/or totally filled copper nanowires have been fabricated by methane decomposition using copper microgrid as a catalyst at 1173 K. The formation mechanism of CNTs with totally hollow channels is carbon precipitation at carbon-metal interface via the preferable surface diffusion mode of carbon. The selectivity of these CNTs can be improved by increasing the purity of copper catalysts and adding hydrogen in the feed gas. To form long and continuous copper nanowires up to 8–10 μm the filling of copper in the CNT channel requires the liquid or quasi-liquid state capillary adsorption of nanosized copper at 1173 K under the thermal driving force. The filling volume ratio of copper to total nano-channel of the CNTs is firstly increased to about 50%. The copper inside the CNTs is of single crystalline form and face centered cubic (fcc) structure. The method is useful for further controlled synthesis of CNTs with totally hollow channels and/or totally copper filled nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 522 (1993)

    Article  ADS  Google Scholar 

  2. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994)

    Article  ADS  Google Scholar 

  3. C. Guerret-Pie’court, Y.L. Bouar, A. Loiseau, H. Pascard, Nature 372, 761 (1994)

    Article  ADS  Google Scholar 

  4. Y. Yosida, Appl. Phys. Lett. 64, 3048 (1994)

    Article  ADS  Google Scholar 

  5. X.Y. Tao, X.B. Zhang, J.P. Cheng, Z.Q. Luo, S.M. Zhou, F. Liu, Diam. Relat. Mater. 15, 1271 (2006)

    Article  Google Scholar 

  6. Y.H. Gao, Y. Bando, Nature 415, 599 (2002)

    Article  Google Scholar 

  7. G.L. Hwang, K.C. Hwang, Y.T. Shieh, S.J. Lin, Chem. Mater. 15, 1353 (2003)

    Article  Google Scholar 

  8. O. Hjortatam, P. Isberg, S. Soderholm, H.J. Dai, Appl. Phys. A 78, 1175 (2004)

    Article  ADS  Google Scholar 

  9. N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton, M. Terrones, M. Ruhle, R. Escudero, F. Morales, Appl. Phys. Lett. 75, 3363 (1999)

    Article  ADS  Google Scholar 

  10. Z. Zhou, J.J. Zhao, Z.F. Chen, X. Gao, J.P. Lu, P.v.R. Schleyer, C.K. Yang, J. Phys. Chem. B 110, 2529 (2006)

    Article  Google Scholar 

  11. Y. Gao, J. Liu, M. Shi, S.H. Elder, J.W. Virden, Appl. Phys. Lett. 74, 3642 (1999)

    Article  ADS  Google Scholar 

  12. Z.Y. Wang, Z.B. Zhao, J.S. Qiu, Carbon 44, 1845 (2006)

    Article  Google Scholar 

  13. W.Z. Qian, F. Wei, T. Liu, Z.W. Wang, Solid State Commun. 126, 365 (2003)

    Article  Google Scholar 

  14. X.R. Ye, Y.H. Lin, C.M. Wang, C.M. Wai, Adv. Mater. 15, 316 (2003)

    Article  Google Scholar 

  15. S. Liu, J. Zhu, Appl. Phys. A 70, 673 (2000)

    ADS  Google Scholar 

  16. W.Z. Li, J.G. Wen, Y. Tu, Z.F. Ren, Appl. Phys. A 73, 259 (2001)

    Article  ADS  Google Scholar 

  17. T. Katayama, H. Araki, K. Yoshino, J. Appl. Phys. 91, 6675 (2002)

    Article  ADS  Google Scholar 

  18. O.A. Louchev, T. Laude, Y. Sato, H. Kanda, J. Chem. Phys. 118, 7622 (2003)

    Article  ADS  Google Scholar 

  19. V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang, Carbon 33, 1727 (1995)

    Article  Google Scholar 

  20. V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, Chem. Phys. Lett. 223, 329 (1994)

    Article  ADS  Google Scholar 

  21. A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, R.P.H. Chang, Appl. Phys. Lett. 69, 345 (1996)

    Article  ADS  Google Scholar 

  22. G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003)

    Article  ADS  Google Scholar 

  23. W.Z. Qian, T. Liu, F. Wei, Z.W. Wang, Carbon 41, 2683 (2003)

    Article  Google Scholar 

  24. W.Y. Choi, J.W. Kang, H.J. Hwang, Phys. Rev. B 68, 193405 (2003)

    Article  ADS  Google Scholar 

  25. L. Hui, B.L. Wang, J.L. Wang, G.H. Wang, J. Chem. Phys. 120, 3431 (2004)

    Article  ADS  Google Scholar 

  26. W.A. Jesser, R.Z. Shneck, W.W. Gile, Phys. Rev. B 69, 144121 (2004)

    Article  ADS  Google Scholar 

  27. I.V. Golosovsky, R.G. Delaplane, A.A. Naberezhnov, Y.A. Kumzerov, Phys. Rev. B 69, 132301 (2004)

    Article  ADS  Google Scholar 

  28. A.K. Schaper, H. Hou, A. Greiner, R. Schneider, F. Phillipp, Appl. Phys. A 78, 73 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.Z. Qian.

Additional information

PACS

81.07.De; 82.33.Ya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Qian, W., Yu, H. et al. Synthesis of carbon nanotubes with totally hollow channels and/or with totally copper filled nanowires. Appl. Phys. A 86, 265–269 (2007). https://doi.org/10.1007/s00339-006-3770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3770-2

Keywords

Navigation