Skip to main content
Log in

On the toughening mechanisms of MoSi2 reinforced Si3N4 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The toughness increment occurring in Si3N4-based composites due to the addition of MoSi2 particles was compared to the predictions of theoretical models based on the combination of residual stresses and crack deflection toughening mechanisms. A direct application of theoretical models led to a substantial discrepancy between predicted and observed values. For this reason, the basic parameters of the theoretical models were experimentally evaluated. The residual stresses were assessed by measuring the strain in the reinforcing particles by X-ray diffraction. Moreover, the MoSi2 interparticle distance was calculated by image analysis and the crack paths were analyzed in order to check the actual extent of crack deflection. The overall toughness increase recalculated as the sum of the newly estimated values of residual stresses and crack deflection contributions, was shown to be in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Lange, Philos. Mag. 174, 983 (1970)

    ADS  Google Scholar 

  2. K.T. Faber, A.G. Evans, Acta Metall. 31, 565 (1983)

    Article  Google Scholar 

  3. K.T. Faber, A.G. Evans, Acta Metall. 31, 577 (1983)

    Article  Google Scholar 

  4. B. Budiansky, J.C. Amazigo, A.G. Evans, J. Mech. Phys. Solids 36, 167 (1988)

    Article  ADS  Google Scholar 

  5. P.F. Becher, J. Am. Ceram. Soc. 74, 255 (1991)

    Article  Google Scholar 

  6. N. Claussen, J. Steel, R.F. Palst, Ceram. Bull. 56, 559 (1977)

    Google Scholar 

  7. A.G. Evans, K.T. Faber, J. Am. Ceram. Soc. 67, 255 (1984)

    Article  Google Scholar 

  8. M. Taya, S. Hayashi, A.S. Kobayashi, H.S. Yoon, J. Am. Ceram. Soc. 73, 1382 (1990)

    Article  Google Scholar 

  9. J.J. Petrovic, M.I. Pena, H.H. Kung, J. Am. Ceram. Soc. 80, 1111 (1997)

    Article  Google Scholar 

  10. J.J. Petrovic, M.I. Pena, I.E. Reimanis, M.S. Sandlin, S.D. Conzone, H.H. Kung, D.P. Butt, J. Am. Ceram. Soc. 80, 3070 (1997)

    Article  Google Scholar 

  11. D. Sciti, S. Guicciardi, A. Bellosi, J. Ceram. Proc. Res. 3, 87 (2002)

    Google Scholar 

  12. M.-Y. Kao, J. Am. Ceram. Soc. 76, 2879 (1993)

    Article  Google Scholar 

  13. L.O. Nordberg, T. Ekström, J. Am. Ceram. Soc. 78, 797 (1995)

    Article  Google Scholar 

  14. D. Sciti, S. Guicciardi, J. Mater. Res. 19, 3343 (2004)

    Article  ADS  Google Scholar 

  15. J. Deng, T. Can, J. Sun, Ceram. Int. 31, 249 (2005)

    Article  Google Scholar 

  16. S.A. Baldacim, C. Santos, O.M.M. Silva, C.R.M. Silva, Int. J. Refr. Metals Hard Mater. 21, 233 (2003)

    Article  Google Scholar 

  17. A.H. Jones, R.S. Dobedoe, M.H. Lewis, J. Europ. Ceram. Soc. 21, 969 (2001)

    Article  Google Scholar 

  18. I.E. Reimanis, Mater. Sci. Eng. A 237, 159 (1997)

    Article  Google Scholar 

  19. M. Sternitzke, J. Europ. Ceram. Soc. 17, 1061 (1997)

    Article  Google Scholar 

  20. S. Burkhardt, R. Riedel, G. Müller, J. Eur. Ceram. Soc. 17, 3 (1997)

    Article  Google Scholar 

  21. N. Claussen, J. Steeb, R.F. Pabst, Ceram. Bull. 56, 559 (1977)

    Google Scholar 

  22. A. Bellosi, G.N. Babini, Key Engineering Materials (Trans Tech, Switzerland, 1994), Vol. 89–91, p. 117

  23. D.G. Munz, J.L. Shannon, R.T. Bubsey, Int. J. Fract. 16, R137 (1980)

    Article  Google Scholar 

  24. G. Pezzotti, Acta Metall. Mater. 41, 1825 (1993)

    Article  Google Scholar 

  25. M. Nakamura, S. Matsumoto, T. Hirano, J. Mater. Sci. 29, 3309 (1990)

    Article  ADS  Google Scholar 

  26. J.F. Shackelford, W. Alexander (Eds.), CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, 2001), p. 482

  27. G. Leroy, G.D. Embury, G. Edwards, M.F. Ashby, Acta Metall. 29, 1509 (1981)

    Article  Google Scholar 

  28. D. Sciti, S. Guicciardi, G. Celotti, S. Tochino, G. Pezzotti, Appl. Phys. A 82, 317 (2006)

    Article  ADS  Google Scholar 

  29. H. Ichimaru, G. Pezzotti, Mat. Sci. Eng. A 236, 261 (2002)

    Article  Google Scholar 

  30. H. Tan, W. Yang, Mech. Mater. 30, 111 (1999)

    Article  Google Scholar 

  31. R.K. Wade, J.J. Petrovic, J. Am. Ceram. Soc. 75, 1682 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sciti.

Additional information

PACS

81.05.Je; 81.40.Np

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciti, D., Celotti, G., Pezzotti, G. et al. On the toughening mechanisms of MoSi2 reinforced Si3N4 ceramics. Appl. Phys. A 86, 243–248 (2007). https://doi.org/10.1007/s00339-006-3752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3752-4

Keywords

Navigation