Skip to main content
Log in

Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We fabricate silicon nanopillar arrays with pillar diameters smaller than 200 nm by using the conventional reactive ion etching (RIE) technique and nickel masks. We use the ratio between the lateral and vertical etching rates as an estimate of the etching anisotropy. The dependence of this ratio on the rf power, the chamber pressure, and the gas mixture is investigated systematically to achieve the largest etching anisotropy. Using the optimized etching parameters in the RIE process, we demonstrate silicon pillars with smooth surface, vertical sidewalls, and aspect ratios higher than 20. In addition, we employ dilute aqua regia to treat the pillars and shrink the diameters to 70 nm. The pillar height remains ∼2500 nm after the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, H. Misawa, J. Opt. Soc. Am. B 18, 1084 (2001)

    ADS  Google Scholar 

  2. W. Hattori, H. Someya, M. Baba, H. Kawaura, J. Chromatogr. A 1051, 141 (2004)

    Article  Google Scholar 

  3. X.-M. Yan, S. Kwon, A.M. Contreras, M.M. Koebel, J. Bokor, G.A. Somorjai, Catal. Lett. 105, 127 (2005)

    Article  Google Scholar 

  4. M. Callies, Y. Chen, F. Marty, A. Pepin, D. Quere, Microelec. Eng. 7879, 100 (2005)

    Google Scholar 

  5. M.J. Kim, J.S. Lee, S.K. Kim, G.Y. Yeom, J.-B. Yoo, C.-Y. Park, Thin Solid Films 475, 41 (2005)

    Article  Google Scholar 

  6. D.L. Olynick, J.A. Liddle, I.W. Rangelow, J. Vac. Sci. Technol. B 23, 2073 (2005)

    Article  Google Scholar 

  7. V. Ovchinnikov, A. Malinin, S. Novikov, C. Tuovinen, Mater. Sci. Eng. B 6970, 459 (2000)

    Google Scholar 

  8. C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, J. Wang, Appl. Phys. A 79, 2027 (2004)

    ADS  Google Scholar 

  9. R. d’Agostino, D.L. Flamm, J. Appl. Phys. 52, 162 (1981)

    Article  ADS  Google Scholar 

  10. R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, J. Electrochem. Soc. 142, 2020 (1995)

    Article  Google Scholar 

  11. S. Gomez, R.J. Belen, M. Kiehlbauch, E.S. Aydil, J. Vac. Sci. Technol. A 22, 606 (2004)

    Article  ADS  Google Scholar 

  12. R.F. Figueroa, S. Spiesshoefer, S.L. Burkett, L. Schaper, J. Vac. Sci. Technol. B 23, 2226 (2005)

    Article  Google Scholar 

  13. T. Wells, M.M. El-Gomati, J. Wood, J. Vac. Sci. Technol. B 15, 434 (1997)

    Article  Google Scholar 

  14. K.R. Williams, K. Gupta, M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003)

    Article  Google Scholar 

  15. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, J. Micromech. Microeng. 5, 115 (1995)

    Article  ADS  Google Scholar 

  16. H. Jansen, M. de Boer, J. Burger, R. Legtenberg, M. Elwenspoek, Microelec. Eng. 27, 475 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-H. Lee.

Additional information

PACS

52.77.Bn; 81.65.Cf; 85.40.Hp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YF., Chou, QR., Lin, JY. et al. Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique. Appl. Phys. A 86, 193–196 (2007). https://doi.org/10.1007/s00339-006-3748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3748-0

Keywords

Navigation