Skip to main content
Log in

A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we present plasma etching alone as a directed assembly method to both create the nanodot pattern on an etched polymeric (PMMA) film and transfer it to a silicon substrate for the fabrication of silicon nanopillars or cone-like nanostructuring. By using a shield to control sputtering from inside the plasma reactor, the size and shape of the resulting nanodots can be better controlled by varying plasma parameters as the bias power. The effect of the shield on inhibitor deposition on the etched surfaces was investigated by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measurements. The fabrication of quasi-ordered PMMA nanodots of a diameter of 25 nm and period of 54 nm is demonstrated. Pattern transfer to the silicon substrate using the same plasma reactor was performed in two ways: (a) a mixed fluorine-fluorocarbon-oxygen nanoscale etch plasma process was employed to fabricate silicon nanopillars with a diameter of 25 nm and an aspect ratio of 5.6, which show the same periodicity as the nanodot pattern, and (b) high etch rate cryogenic plasma process was used for pattern transfer. The result is the nanostructuring of Si by high aspect ratio nanotip or nanocone-like features that show excellent antireflective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gogolides E, Vassilios C, George K, Dimitrios K, Katerina T, George B, Marilena V, Angeliki T. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. Journal of Physics. D, Applied Physics, 2011, 44(17): 174021

    Article  CAS  Google Scholar 

  2. Franssila S. Optical Lithography. Introduction to Microfabrication. Hoboken: John Wiley & Sons, Ltd., 2010, 103–113

    Chapter  Google Scholar 

  3. Stulen R H, Sweeney D W. Extreme ultraviolet lithography. IEEE Journal of Quantum Electronics, 1999, 35(5): 694–699

    Article  CAS  Google Scholar 

  4. Pfeiffer H C. Direct write electron beam lithography: A historical overview. In: Proceedings of SPIE Photomask Technology. Monterey: SPIE, 2010, 782316

    Google Scholar 

  5. Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography. Journal of Vacuum Science & Technology. B, 1996, 14(6): 4129–4133

    Article  CAS  Google Scholar 

  6. Schift H. Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology. B, 2008, 26(2): 458

    Article  CAS  Google Scholar 

  7. Colson P, Henrist C, Cloots R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials, 2013, 2013: 1–19

    Article  CAS  Google Scholar 

  8. Zhang G, Wang D. Colloidal lithography—the art of nanochemical patterning. Chemistry, an Asian Journal, 2009, 4(2): 236–245

    Article  CAS  PubMed  Google Scholar 

  9. Haynes C, Van Duyne P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. Journal of Physical Chemistry B, 2001, 105: 5599–5611

    Article  CAS  Google Scholar 

  10. Hamley I W. Nanostructure fabrication using block copoly-mers—Review. Nanotechnology, 2003, 14: 16

    Article  Google Scholar 

  11. Tallegas S, Baron T, Gay G, Aggrafeil C, Salhi B, Chevolleau T, Cunge G, Bsiesy A, Tiron R, Chevalier X, et al. Block copolymer technology applied to nanoelectronics. Physica Status Solidi. C, Current Topics in Solid State Physics, 2013, 10(9): 1195–1206

    CAS  Google Scholar 

  12. Seeger K, Palmer R E. Fabrication of silicon cones and pillars using rough metal films as plasma etching masks. Applied Physics Letters, 1999, 74(11): 1627–1629

    Article  CAS  Google Scholar 

  13. Ostrikov K. Plasma nanoscience: From nature’s mastery to deterministic plasma-aided nanofabrication. IEEE Transactions on Plasma Science, 2007, 35(2): 127–136

    Article  CAS  Google Scholar 

  14. Levchenko I, Ostrikov K, Diwan K, Winkler K, Mariotti D. Plasma-driven self-organization of Ni nanodot arrays on Si(100). Applied Physics Letters, 2008, 93(18): 183102

    Article  CAS  Google Scholar 

  15. Hsu C H, Lo H C, Chen C F, Wu C T, Hwang J S, Das D, Tsai J, Chen L C, Chen K H. Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Letters, 2004, 4(3): 471–475

    Article  CAS  Google Scholar 

  16. Gharghi M, Sivoththaman S. Formation of nanoscale columnar structures in silicon by a maskless reactive ion etching process. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2006, 24(3): 723

    Article  CAS  Google Scholar 

  17. Muñoz-García J, Vázquez L, Castro M, Gago R, Redondo-Cubero A, Moreno-Barrado A, Cuerno R. Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Materials Science and Engineering R Reports, 2014, 86: 1–44

    Article  Google Scholar 

  18. Gago R, Vázquez L, Plantevin O, Metzger T H, Muñoz-García J, Cuerno R, Castro M. Order enhancement and coarsening of self-organized silicon nanodot patterns induced by ion-beam sputtering. Applied Physics Letters, 2006, 89(23): 233101

    Article  CAS  Google Scholar 

  19. Frost F, Ziberi B, Schindler A, Rauschenbach B. Surface engineering with ion beams: From self-organized nanostructures to ultra-smooth surfaces. Applied Physics. A, Materials Science & Processing, 2008, 91(4): 551–559

    Article  CAS  Google Scholar 

  20. Vourdas N, Kontziampasis D, Kokkoris G, Constantoudis V, Goodyear A, Tserepi A, Cooke M, Gogolides E. Plasma directed assembly and organization: Bottom-up nanopatterning using top-down technology. Nanotechnology, 2010, 21(8): 85302

    Article  CAS  PubMed  Google Scholar 

  21. Gogolides E, Tserepi A, Constandoudis V, Vourdas N, Boulousis G, Vlachopoulou M E, Tsougeni K, Kontziampasis D. Method for the fabrication of periodic structures on polymers using plasma processes. European Patent, EP2300214, 2009-12-17

  22. Kontziampasis D, Constantoudis V, Gogolides E. Plasma directed organization of nanodots on polymers: Effects of polymer type and etching time on morphology and order. Plasma Processes and Polymers, 2012, 9(9): 866–872

    Article  CAS  Google Scholar 

  23. Kokkoris G, Gogolides E. The potential of ion-driven etching with simultaneous deposition of impurities for inducing periodic dots on surfaces. Journal of Physics. D, Applied Physics, 2012, 45(16): 165204

    Article  CAS  Google Scholar 

  24. Kokkoris G. Towards control of plasma-induced surface roughness: Simultaneous to plasma etching deposition. European Physical Journal Applied Physics, 2011, 56(2): 24012

    Article  CAS  Google Scholar 

  25. Gogolides E, Zeniou A. Variable Faraday shield for a substrate holder, a clamping ring, or an electrode, or their combination in a plasma reactor. European Patent, EP3261111, 2017-04-26

  26. Vijaya-Kumar M K, Constantoudis V, Gogolides E, Pret A V, Gronheid R. Contact edge roughness metrology in nanostructures: Frequency analysis and variations. Microelectronic Engineering, 2012, 90: 126–130

    Article  CAS  Google Scholar 

  27. Kokkoris G, Vourdas N, Gogolides E. Plasma etching and roughening of thin polymeric films: A fast, accurate, in situ method of surface roughness measurement. Plasma Processes and Polymers, 2008, 5(9): 825–833

    Article  CAS  Google Scholar 

  28. Dussart R, Tillocher T, Lefaucheux P, Boufnichel M. Plasma cryogenic etching of silicon: From the early days to today’s advanced technologies. Journal of Physics. D, Applied Physics, 2014, 47(12): 123001

    Article  CAS  Google Scholar 

  29. Smyrnakis A, Almpanis E, Constantoudis V, Papanikolaou N, Gogolides E. Optical properties of high aspect ratio plasma etched silicon nanowires: Fabrication-induced variability dramatically reduces reflectance. Nanotechnology, 2015, 26(8): 085301

    Article  CAS  PubMed  Google Scholar 

  30. Ellinas K, Smyrnakis A, Malainou A, Tserepi A, Gogolides E. “Mesh-assisted” colloidal lithography and plasma etching: A route to large-area, uniform, ordered nano-pillar and nanopost fabrication on versatile substrates. Microelectronic Engineering, 2011, 88(8): 2547–2551

    Article  CAS  Google Scholar 

  31. Jansen H V. The black silicon method II. Microelectronic Engineering, 1995, 27: 475–480

    Article  CAS  Google Scholar 

  32. Jansen H V. Black silicon method. VIII. A study of the performance of etching silicon using SF6-O2-based chemistry with cryogenical wafer cooling and a high density ICP source. Microelectronics Journal, 2001, 32: 769–777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Dimitrios Kontziampasis for his contribution in the AFM measurements and his important work on the development of the plasma directed assembly process. This work was supported by (a) the Research Excellence Project ‘Plasma Directed Assembly and Organization—PlasmaNanoFactory’ which is implemented under the ‘Aristeia I’ Action of the ‘Operational Programme Education and Lifelong Learning’ (Project ID 695) and is co-funded by the European Social Fund (ESF) and National Resources, (b) the Ph.D. fellowship programme of NCSR Demokritos which supported Dr. A. Smyrnakis, and (c) the M. Smoluchowski Krakow Research Consortium (in the framework of the KNOW project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Smyrnakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyrnakis, A., Zeniou, A., Awsiuk, K. et al. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication. Front. Chem. Sci. Eng. 13, 475–484 (2019). https://doi.org/10.1007/s11705-019-1809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1809-0

Keywords

Navigation