Skip to main content
Log in

Unusual structural phase transition in nanocrystalline zirconia

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work is the first example demonstrating that a hydrous zirconia formed by precipitation can yield a nearly pure nanocrystalline monoclinic zirconia at a temperature as low as 320 °C. The X-ray diffraction pattern of the hydrous zirconia heated to 310 °C shows that diffraction peaks begin to emerge and reveals a just crystallized mixture of predominantly monoclinic zirconia (70%) with some tetragonal zirconia(30%). In other words, the hydrous zirconia formed in the present work yields the predominantly monoclinic structure coexisting with the tetragonal one as soon as crystallization starts at low temperature (310 °C). This is an important exception to the general principle that amorphous zirconia precursors first convert to the tetragonal structure of zirconia with increasing calcination temperature and then transform to the monoclinic one at a higher temperature (∼600 °C). At the crystallization temperature (310 °C), the monoclinic crystallite size is about 17 nm and the tetragonal one 28 nm. The monoclinic crystallite is much smaller than the tetragonal one with which it co-exists. This result is also not consistent with the traditional view that a critical particle size effect is responsible for the stability of the tetragonal and monoclinic structures. When the temperature (310 °C) is slightly raised to 320 °C, the XRD pattern shows a nearly pure monoclinic zirconia. The crystallite size of the monoclinic zirconia is around 15 nm, and it does not change appreciably as calcination temperature is increased from 320 to or above 400 °C. The unusual structural phase transition has been investigated by several complementary experimental tools: X-raydiffraction and surface analyses, and infrared and Raman spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, W.F. Woodfield, G. Li, J. Boerio-Goates, B.M. Tissue, J. Am. Ceram. Soc. 88, 160 (2005)

    Article  Google Scholar 

  2. P. Afanasiev, A. Thiollier, M. Breysse, J.L. Dubois, Top. Catal. 8, 147 (1999)

    Article  Google Scholar 

  3. S. Xie, E. Iglesia, A.T. Bell, Chem. Mater. 12, 2442 (2000)

    Article  Google Scholar 

  4. A. Clearfield, Inorg. Chem. 3, 146 (1964)

    Article  Google Scholar 

  5. E. Tani, M. Yoshimura, S. Somiya, J. Am. Ceram. Soc. 64, C-181 (1981)

    Article  Google Scholar 

  6. P.E.D. Morgan, J. Am. Ceram. Soc. 67, C-204 (1984)

    Article  Google Scholar 

  7. Bleier, R.M. Cannon, in Better Ceramics through Chemistry, Vol. 73, ed. by C.J. Brinker, D.E. Clark, D.R. Ulrich (Materials Research Society, USA, 1986) pp. 71–78

  8. J.H. Adair, R.P. Denkewicz, F.J. Arriagada, K. Osseo-Asare, in Ceramic Transactions, Ceramic Powder Science II, A, ed. by G.L. Messing, E.R. Fuller Jr., H. Hausner (The American Ceramic Society, USA, 1988) pp. 135–145

  9. R.P. Denkewicz Jr., K.S. TenHuisen, J.H. Adair, J. Mater. Res. 5, 2698 (1990)

    Article  ADS  Google Scholar 

  10. B. Mottet, M. Pichavant, J.M. Bény, J.A. Alary, J. Am. Ceram. Soc. 75, 2515 (1992)

    Article  Google Scholar 

  11. L.M. Zaitsev, Russ. J. Inorg. Chem. 11, 1684 (1966)

    Google Scholar 

  12. E.D. Whitney, J. Am. Ceram. Soc. 53, 697 (1970)

    Article  Google Scholar 

  13. M.A. Blesa, A.J.G. Maroto, S.I. Passaggio, N.E. Figliolia, G. Rigotti, J. Mater. Sci. 20, 4601 (1985)

    Article  ADS  Google Scholar 

  14. S.L. Jones, C.J. Norman, J. Am. Ceram. Soc. 7, C-190 (1988)

    Article  Google Scholar 

  15. R. Srinivasan, M.B. Harris, S.F. Simpson, R.J. DeAngelis, B.H. Davis, J. Mater. Res. 3, 787 (1988)

    Article  ADS  Google Scholar 

  16. G.T. Mamott, P. Barnes, S.E. Tarling, S.L. Jones, C.J. Norman, J. Mater. Sci. 26, 4054 (1991)

    Article  ADS  Google Scholar 

  17. Y.T. Moon, H.K. Park, D.K. Kim, C.H. Kin, J. Am. Ceram. Soc. 78, 2690 (1995)

    Article  Google Scholar 

  18. X. Turrillas, P. Barnes, D. Gascoigne, J.Z. Turner, S.L. Jones, C.J. Norman, C.F. Pygall, A.J. Dent, Radiat. Phys. Chem. 45, 491 (1995)

    Article  ADS  Google Scholar 

  19. K. Matsui, M. Ohgai, J. Am. Ceram. Soc. 80, 1949 (1997)

    Article  Google Scholar 

  20. K. Lee, A. Sathyagal, P.W. Carr, A.V. McCormick, J. Am. Ceram. Soc. 82, 338 (1999)

    Article  Google Scholar 

  21. M.Z.-C. Hu, R.D. Hunt, E.A. Payzant, C.R. Hubbard, J. Am. Ceram. Soc. 82, 2313 (1999)

    Article  Google Scholar 

  22. N. Sergent, J.-F. Lamonier, A. Aboukais, Chem. Mater. 12, 3830 (2000)

    Article  Google Scholar 

  23. E. Torres-Garcia, A. Peláiz-Barranco, C. Vázquez-Ramos, G.A. Fuentes, J. Mater. Res. 16, 2209 (2001)

    Article  ADS  Google Scholar 

  24. T. Sato, J. Therm. Anal. 69, 255 (2002)

    Article  Google Scholar 

  25. H.L. Chang, P. Shady, W.H. Shih, Micropor. Mesopor. Mater. 59, 29 (2003)

    Article  Google Scholar 

  26. B.H. Davis, J. Am. Ceram. Soc. 67, C-168 (1984)

    Article  Google Scholar 

  27. R. Srinivasan, R. De Angelis, J. Mater. Res. 1, 583 (1986)

    Article  ADS  Google Scholar 

  28. R. Srinivasan, L. Rice, B.H. Davis, J. Am. Ceram. Soc. 73, 3528 (1990)

    Article  Google Scholar 

  29. R. Srinivasan, C.R. Hubbard, O.B. Cavin, B.H. Davis, Chem. Mater. 5, 27 (1993)

    Article  Google Scholar 

  30. J.L. Tosan, B. Durand, M. Roubin, F. Bertin, H. Loiseleur, Eur. J. Solid State Inorg. Chem. 30, 179 (1993)

    Google Scholar 

  31. G. Štefanić, S. Musić, B. Gržeta, S. Popović, A. Sekulič, J. Solid Phys. Chem. 59, 879 (1998)

    Article  Google Scholar 

  32. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  33. R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)

    Article  Google Scholar 

  34. T. Chraska, A.H. King, C.C. Berndt, Mater. Sci. Eng. A 286, 169 (2000)

    Article  Google Scholar 

  35. Y. Murase, E. Kato, J. Am. Ceram. Soc. 66, 196 (1983)

    Article  Google Scholar 

  36. A. Clearfield, Rev. Pure Appl. Chem. 14, 91 (1964)

    Google Scholar 

  37. A. Clearfield, J. Mater. Res. 5, 161 (1990)

    Article  ADS  Google Scholar 

  38. H.S. Maiti, K.V.G.K. Gokhale, E.C. Subbarao, J. Am. Ceram. Soc. 55, 317 (1972)

    Article  Google Scholar 

  39. A. Christensen, E.A. Carter, Phys. Rev. B 58, 8050 (1998)

    Article  ADS  Google Scholar 

  40. A. Suresh, M.J. Mayo, W.D. Porter, J. Mater. Res. 18, 2912 (2003)

    Article  ADS  Google Scholar 

  41. T. Tsukada, S. Venigalla, J.H. Adair, in Science, Technology and Applications of Colloidal Suspensions, ed. by J.H. Adair (The American Ceramic Society, USA, 1995) pp. 123–138

  42. D.A. Powers, H.B. Gray, Inorg. Chem. 12, 2721 (1973)

    Article  Google Scholar 

  43. D.L. mercera, J.G. Van Ommer, E.B.M. Doesbureg, A.J. Burggraaf, J.R.H. Ross, Appl. Catal. 57, 127 (1990)

    Article  Google Scholar 

  44. D. Tichit, D. El Alami, F. Figueras, Appl. Catal. A 145, 195 (1996)

    Article  Google Scholar 

  45. A. Hofmann, J. Sauer, J. Phys. Chem. B 108, 14652 (2004)

    Article  Google Scholar 

  46. X. Guo, J. Mater. Sci. 36, 3737 (2001)

    Article  Google Scholar 

  47. J. Livage, K. Doi, C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968)

    Article  Google Scholar 

  48. V.G. Keramidas, W.B. White, J. Am. Ceram. Soc. 57, 22 (1974)

    Article  Google Scholar 

  49. Y. Zeng, G. Fagherazzi, S. Polizzi, J. Mater. Sci. 30, 2153 (1995)

    Article  ADS  Google Scholar 

  50. A.V. Chadwick, G. Mountjoy, V.M. Nield, I.J.F. Poplett, M.E. Smith, J.H. Strange, M.G. Tucker, Chem. Mater. 13, 1219 (2001)

    Article  Google Scholar 

  51. C.M. Phillippi, K.S. Mazdiyasni, J. Am. Ceram. Soc. 54, 254 (1971)

    Article  Google Scholar 

  52. V. Bolis, G. Magnacca, G. Ceratto, C. Morterra, Thermochim. Acta 379, 147 (2001)

    Article  Google Scholar 

  53. A. Modal, S. Ram, Chem. Phys. Lett. 382, 297 (2003)

    Article  ADS  Google Scholar 

  54. L. Shi, K.C. Tin, N.B. Wong, J. Mater. Sci. 34, 3367 (1999)

    Article  Google Scholar 

  55. A.A.M. Ali, M.I. Zaki, Thermochim. Acta 336, 17 (1999)

    Article  Google Scholar 

  56. G.Y. Guo, Y.L. Chen, J. Mater. Sci. 39, 4039 (2004)

    Article  ADS  Google Scholar 

  57. G. Štefanić, S. Musić, B. Gržeta, S. Popović, A. Sekulić, J. Solid Phys. Chem. 59, 879 (1998)

    Article  Google Scholar 

  58. C.G. Kontoyannis, M. Orkoula, J. Mater. Sci. 29, 5316 (1994)

    Article  ADS  Google Scholar 

  59. G.G. Siu, M.J. Stokes, Phys. Rev. B 59, 3173 (1999)

    Article  ADS  Google Scholar 

  60. M. Jouanne, J.F. Morhange, M.A. Kanehisa, Phys. Rev. B 64, 155404 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-Y. Guo.

Additional information

PACS

81.07.-b; 64.70.Nd; 82.80.-d; 78.67.-n; 81.05.Je

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, GY., Chen, YL. Unusual structural phase transition in nanocrystalline zirconia. Appl. Phys. A 84, 431–437 (2006). https://doi.org/10.1007/s00339-006-3631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3631-z

Keywords

Navigation