Skip to main content
Log in

Reversible tuning of a series of intergrowth phases of the Ruddlesden–Popper type SrO(SrTiO3)n in an (001) SrTiO3 single-crystalline plate by an external electric field and its potential use for adaptive X-ray optics

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Reversible structural changes of near-electrode regions of an (001) SrTiO3 (STO) single-crystal plate with perovskite-type of structure in an external electric field are described as the tunable and reversible formation of a significant volume of domains containing Ruddlesden–Popper (RP) phases of composition SrO(SrTiO3)n with variable n. Compositional changes are discussed to be caused by electromigration of ion complexes in the static electric field, i.e., by solid state electrolysis of the perovskite STO. Electromigration is initiated by the electric field which then stabilizes the RP domains formed. The RP domains can be described as coherently intergrown with the surrounding perovskite matrix. The X-ray scattering behaviour of these intergrowths, compared with the perovskite STO, suggests the technical use of the phenomenon for adaptive X-ray optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Szot, W. Speier , Phys. Rev. B 60, 5909 (1999)

    Article  Google Scholar 

  2. K. Szot, M. Pawelczyk, J. Herion, C. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, J. Dec, Appl. Phys. A 62, 335 (1996)

    Google Scholar 

  3. D.C. Meyer, A.A. Levin, S. Bayer, A. Gorbunov, W. Pompe, P. Paufler, Appl. Phys. A 80, 515 (2005)

    Article  Google Scholar 

  4. S.N. Ruddlesden, P. Popper, Acta Cryst. 10, 538 (1957)

    Article  Google Scholar 

  5. S.N. Ruddlesden, P. Popper, Acta Cryst. 11, 54 (1958)

    Article  Google Scholar 

  6. K. Lukaszewicz, Rosz. Chem. 33, 239 (1959)

    Google Scholar 

  7. M.M. Elcombe, E.H. Kisi, K.D. Hawkins, T.J. White, P. Goodman, S. Mathesoon, Acta Cryst. B 47, 305 (1991); ICSD code 63704

    Google Scholar 

  8. C. Noguera, Philos. Mag. Lett. 80, 173 (2000)

    Article  Google Scholar 

  9. T. Hungría, J.C. Lisoni, A. Castro, Chem. Mater. 14, 1747 (2002)

    Article  Google Scholar 

  10. T. Hungría, J.G. Lisoni, A. Moure, L. Pardo, A. Castro, Ferroelectrics 268, 399 (2002)

    Article  Google Scholar 

  11. J.-H. Sohn, Y. Inaguma, M. Itoh, T. Nakamura, Mater. Sci. Eng. B 41, 50 (1996)

    Article  Google Scholar 

  12. J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, X.-D. Xiang, Appl. Phys. Lett. 78, 3292 (2001)

    Article  Google Scholar 

  13. R.J.D. Tilley, J. Solid State Chem. 21, 293 (1977)

    Article  Google Scholar 

  14. Y. Liang, D. Bonnell, Surf. Sci. Lett. 285, L510 (1993)

    Article  Google Scholar 

  15. D. Fuchs, M. Adam, P. Schweiss, S. Gerhold, S. Schuppler, R. Schneider, B. Obst, J. Appl. Phys. 88, 1844 (2000)

    Article  Google Scholar 

  16. J. Blanc, D.L. Staebler, Phys. Rev. B 4, 3548 (1971)

    Article  Google Scholar 

  17. K. Szot, W. Speier, W. Eberhardt, Appl. Phys. Lett. 60, 1190 (1992)

    Article  Google Scholar 

  18. D.C. Meyer, A.A. Levin, T. Leisegang, P. Paufler, German Patent Application DE 102004058035 (2004)

  19. M.A. McCoy, R.W. Grimes, W.E. Lee, Philos. Mag. A 75, 833 (1997)

    Google Scholar 

  20. J. Hutton, R.J. Nelmes, Acta Cryst. A 37, 916 (1981)

    Article  Google Scholar 

  21. G.M. Meyer, R.J. Nelmes, J. Hutton, Ferroelectrics 21, 461 (1968)

    Google Scholar 

  22. Y.A. Abramov, V.G. Tsirelson, V.E. Zavodnik, S.A. Ivanov, I.D. Brown, Acta Cryst. B 51, 942 (1995)

    Article  Google Scholar 

  23. J. Brous, I. Fankuchen, E. Banks, Acta Cryst. 6, 67 (1953)

    Article  Google Scholar 

  24. H.D. Megaw, J. Inorg. Nucl. Chem. 15, 356 (1960)

    Article  Google Scholar 

  25. W. Wong-Ng, H. McMurdil, B. Paretzkin, C. Hubbard, A. Dragoo, Powder Diffr. 3, 186 (1988)

    Google Scholar 

  26. G.J. McCatyhy, W.B. White, R. Roy, J. Am. Ceram. Soc. 52, 463 (1969)

    Google Scholar 

  27. D.C. Meyer, P. Paufler, J. Alloys Compd. 298, 42 (2000)

    Article  Google Scholar 

  28. W. Kraus, G. Nolze, J. Appl. Cryst. 29, 301 (1996)

    Article  Google Scholar 

  29. C.A. Segmüller, A.E. Blakeslee, J. Appl. Cryst. 6, 19 (1973)

    Article  Google Scholar 

  30. C. Michaelsen, Philos. Mag. A 72, 813 (1995)

    Google Scholar 

  31. F. He, B.O. Wells, Z.-G. Ban, S.P. Alpay, S. Grenier, S.M. Shapiro, W. Si, A. Clark, X.X. Xi, Phys. Rev. B 70, 235405 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.C. Meyer.

Additional information

PACS

61.10.-i; 68.55.Ln; 77.65.-j; 77.84.Bw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, D., Levin, A., Leisegang, T. et al. Reversible tuning of a series of intergrowth phases of the Ruddlesden–Popper type SrO(SrTiO3)n in an (001) SrTiO3 single-crystalline plate by an external electric field and its potential use for adaptive X-ray optics. Appl. Phys. A 84, 31–35 (2006). https://doi.org/10.1007/s00339-006-3584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3584-2

Keywords

Navigation