Skip to main content
Log in

Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Luster decoration of medieval and renaissance potteries constitutes one of the most important and sophisticated decoration techniques of the Mediterranean basin. Lusters consist in a thin layer of silver and copper nanocrystals immersed in a dielectric matrix. Different physical phenomena are responsible for the very brilliant and complex colored effect produced by the lusters. On one hand, according to the thickness of the thin layer, interferential effects occur giving rise to a classical iridescent effect. On the other hand, the nanostructure of the metallic compound leads to extra absorption, generally observed in the visible or near infrared, due to an external resonance associated with the excitation of a surface plasmon in the metallic particles. The position of this resonance, and so the color of the film, depends from many parameters, mainly: (1) the relative volume fraction p of the metal inclusions. (2) The mean size of the metal particle. (3) The shape of the particles and (4) the dielectric functions of the constituents. These two phenomena are not independent as the second one greatly affects the dielectric function of the film and, thus, its optical thickness.

In this paper, the physical and optical properties of various lusters from Deruta and Gubbio (Italy) of the XVI century are presented. The structure and the composition of the different films have been determined by scanning electron microscope (SEM), ion beam analyses (PIXE and RBS) and low incidence X-ray diffraction. The optical properties have been determined by two different techniques: (a) hemispherical spectroscopic measurements under near-normal incidence; (b) gonioscopic measurements for a given angle of incidence and wavelength. The first one allows the determination of the effective index of refraction of the inhomogeneous layer, and the second one the determination of the bidirectional reflectance distribution function (BRDF) of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Caiger-Smith, The technique of reduced-pigment luster; in: Luster Pottery Technique: Tradition and Innovation in Islam and the Western World (The Herbert Press, London, 1985) pp. 197–220

  2. J. Pérez-Arantegui, J. Molera, A. Larrea, T. Pradell, M. Vendrell-Saz, I. Borgia, B.G. Brunetti, F. Cariati, P. Fermo, M. Mellini, A. Sgamellotti, C. Viti, J. Am. Ceram. Soc. 84, 442 (2001)

    Article  Google Scholar 

  3. G. Padeletti, P. Fermo, Appl. Phys. A 76, 515 (2003)

    Article  ADS  Google Scholar 

  4. E. Darque-Ceretti, D. Hélary, A. Bouquillon, M. Aucouturier, “Gold-like lustre: a nanometric surface treatment for the decoration of glazed ceramics in ancient Islam, Moresque Spain, and Renaissance Italy”, 18th International conference Surface Modification Technologies, SMT 18, Dijon, France, November 2004, to be published in Surface Technologies (2005)

  5. J.C. Dran, T. Calligaro, J. Salomon, Particle induced X-ray Emission, in: Modern Analytical Methods in Art and Archaeology, ed. by E. Ciliberto, G. Spoto (John Wiley & Sons, Chichester, 2000) p. 135

  6. E. Ioannidou, D. Bourgarit, T. Calligaro, J.C. Dran, M. Dubus, J. Salomon, P. Walter, Nucl. Instrum. Methods Phys. Res. B 161163, 730 (2000)

    Article  Google Scholar 

  7. M. Mayer, SIMNRA © Max-Planck-Institut für Metallphysik (1997–1998), http://www.rzg.mpg.de/

  8. G. Padeletti, P. Fermo, Appl. Phys. A 79, 277 (2004)

    Article  ADS  Google Scholar 

  9. P. Fredrickx, D. Hélary, D. Schryvers, E. Darque-Ceretti, Appl. Phys. A 79, 283 (2004)

    Article  ADS  Google Scholar 

  10. G.A. Niklasson, C.G. Granqvist, J. Appl. Phys. 55, 3382 (1984)

    Article  ADS  Google Scholar 

  11. C.G. Granqvist, O. Hunderi, Phys. Rev. B 16, 3513 (1977)

    Article  ADS  Google Scholar 

  12. C.J.F. Böttecher, Theory of electric polarization (Elsevier, Amsterdam, 1973)

    Google Scholar 

  13. J.C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904)

    Article  ADS  Google Scholar 

  14. J.C. Maxwell Garnett, Philos. Trans. R. Soc. London B 205, 237 (1906)

    Article  ADS  Google Scholar 

  15. R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Phys. Rev. B 8, 3689 (1973)

    Article  ADS  Google Scholar 

  16. W.T. Doyle, Phys. Rev. 111 318 (1977)

    Google Scholar 

  17. U. Kreibig, J. Phys. (Paris) 38, C2-97 (1977)

    Article  Google Scholar 

  18. S. Berthier, Optique des Milieux Composites (Polytechnica, Paris, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berthier.

Additional information

PACS

68.55.N; 61.46

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthier, S., Padeletti, G., Fermo, P. et al. Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories. Appl. Phys. A 83, 573–579 (2006). https://doi.org/10.1007/s00339-006-3526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3526-z

Keywords

Navigation