Skip to main content
Log in

Optical Properties of Thin Films of Zinc Phthalocyanines Determined by Spectroscopic Ellipsometry

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The optical properties of thin films based on unsubstituted and tetrafluoro-substituted zinc phthalocyanines synthesized by physical vapor deposition are studied within the wavelength range of 250–1000 nm. Spectroscopic ellipsometry shows that films based on zinc phthalocyanines have uniform thicknesses and optical parameters, strongly absorb visible light, and have characteristic absorption peaks corresponding to electronic transitions in the system of conjugated double bonds of phthalocyanine rings. Introduction of fluorine substituents into peripheral positions of the zinc phthalocyanine molecule leads to an increase in light absorption and a shift of the main absorption maximum to longer wavelengths (bathochromic shift). The absorption spectra are described using the Lorentz–Drude dispersion model. It is shown that the films based on a mixture of phthalocyanines can be well described using the Bruggeman effective medium model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Mukherjee, A. K. Ray, A. K. Sharma, M. J. Cook, and I. Chambrier, J. Appl. Phys. 103, 074507 (2008). doi 10.1063/1.2903061

    Article  ADS  Google Scholar 

  2. G. Chintakula, S. Rajaputra, and V. P. Singh, Sol. Energy Mater. Sol. Cells 94, 34 (2010). doi 10.1016/j.solmat.2009.06.029

    Article  Google Scholar 

  3. O. A. Melville, B. H. Lessard, and T. P. Bender, ACS Appl. Mater. Interfaces 7, 13105 (2015). doi 10.1021/acsami.5b01718

    Article  Google Scholar 

  4. J. M. Birchall, R. N. Haszeldine, and J. O. Morley, J. Chem. Soc. C, 2667 (1970). doi 10.1039/J39700002667

  5. H. Brinkmann, C. Kelting, S. Makarov, O. Tsaryova, G. Schnurpfeil, D. Wöhrle, and D. Schlettwein, Phys. Status Solidi A 205, 409 (2008). doi 10.1002/pssa.200723391

    Article  ADS  Google Scholar 

  6. J. H. Schön and Z. Bao, J. Appl. Phys. 89, 3526 (2001).

    Article  ADS  Google Scholar 

  7. E. Barrena, J. O. Ossó, F. Schreiber, M. Garriga, M. I. Alonso, and H. Dosch, J. Mater. Res. 19, 2061 (2002). doi 10.1557/JMR.2004.0258

    Article  ADS  Google Scholar 

  8. D. G. de Oteyza, E. Barrena, J. O. Oss, S. Sellner, and H. Dosch, J. Am. Chem. Soc. 128, 15052 (2006). doi 10.1021/ja064641r

  9. D. Schlettwein, H. Graaf, J. P. Meyer, T. Oekermann, and N. I. Jaeger, J. Phys. Chem. B 103, 3078 (1999). doi 10.1021/jp983111h

    Article  Google Scholar 

  10. S. Uno, H. Hoshi, H. Takezoe, and K. Ishikawa, Jpn. J. Appl. Phys. 44, L461 (2005). doi 10.1143/jjap.44.l461

    Article  Google Scholar 

  11. D. Schlettwein, H. Tada, and S. Mashiko, Langmuir 16, 2872 (2000). doi 10.1021/la991111i

    Article  Google Scholar 

  12. S. Hashimoto, S. Isoda, H. Kurata, G. Lieser, and T. Kobayashi, J. Porphyr. Phthalocyan. 3, 585 (1999).

    Article  Google Scholar 

  13. T. V. Basova, V. G. Kiselev, I. S. Dubkov, F. Latteyer, S. A. Gromilov, H. Peisert, and T. Chasse, J. Phys. Chem. C 117, 7097 (2013). doi 10.1021/jp4016257

    Article  Google Scholar 

  14. S. Hiller, D. Schlettwein, N. R. Armstrong, and D. Wöhrle, J. Mater. Chem. 8, 945 (1998).

    Article  Google Scholar 

  15. V. A. Plyashkevich‚ T. V. Basova, I. V. Yushina, and I. K. Igumenov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 423 (2008).

  16. S. Isoda, S. Hashimoto, T. Ogawa, H. Kurata, S. Moriguchi, and T. Kobayashi, Mol. Cryst. Liq. Cryst. 247, 191 (1994). doi 10.1080/10587259408039205

    Article  Google Scholar 

  17. D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, S. A. Gromilov, N. B. Morozova, and T. V. Basova, Appl. Surf. Sci. 372, 79 (2016). doi 10.1016/j.apsusc.2016.03.066

    Article  ADS  Google Scholar 

  18. D. Klyamer, A. Sukhikh, S. Gromilov, P. Krasnov, and T. Basova, Sensors 18, 2141 (2018). doi 10.3390/s18072141

    Article  Google Scholar 

  19. S. V. Rykhlitskii, E. V. Spesivtsev, V. A. Shvets, and V. Yu. Prokop’ev, Prib. Tekh. Eksp., No. 2, 161 (2012). doi 10.4236/jasmi.2013.32014

  20. G. I. Dovbeshko, V. R. Romanyuk, D. V. Pidgirnyi, V. V. Cherepanov, E. O. Andreev, V. M. Levin, P. P. Kuzhir, T. Kaplas, and Y. P. Svirko, Nanoscale Res. Lett. 10, 234 (2015). doi 10.1186/s11671-015-0946-8

    Article  ADS  Google Scholar 

  21. J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, A. Sanger, R. Daipuriya, M. Singh, and R. Chandra, Appl. Opt. 55, 8368 (2016). doi 10.1364/AO.55.008368

    Article  ADS  Google Scholar 

  22. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors Numerical Data and Graphical Information (Springer Science, New York, 1999).

    Book  Google Scholar 

  23. C. C. Leznoff and A. B. P. Lever, Phthalocyanines, Properties and Application (VCH, New York, 1989–1996).

  24. W. D. Cheng, D. S. Wu, H. Zhang, and J. T. Chen, Phys. Rev. B 64, 125109 (2001). doi 10.1103/PhysRevB.64.125109

    Article  ADS  Google Scholar 

  25. J. Simon and J. J. Andre, in Molecular Semiconductors: Photoelectrical Properties and Solar Cells, Ed. by J. M. Lehn and C. W. Rees (Springer, Berlin, 1985).

    Book  Google Scholar 

  26. M. Kasha, H. R. Rawls, and A. El-Bayoumi, Pure Appl. Chem. 11, 371 (1965). doi 10.1351/pac196511030371

    Article  Google Scholar 

  27. B. M. Hassan, H. Li, and N. B. McKeown, J. Mater. Chem. 10, 39 (2000). doi 10.1039/A903341F

    Article  Google Scholar 

  28. G. N. Meshkova, A. T. Vartanyan, and A. N. Sidorov, Opt. Spectrosc. 43, 151 (1977).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by State Orders nos. 0306-2016-0004 and 0300-2016-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kruchinin.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, V.N., Klyamer, D.D., Spesivtsev, E.V. et al. Optical Properties of Thin Films of Zinc Phthalocyanines Determined by Spectroscopic Ellipsometry. Opt. Spectrosc. 125, 1019–1024 (2018). https://doi.org/10.1134/S0030400X18120093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18120093

Navigation