Skip to main content
Log in

Approaches to diffusion barrier creation and trench filling for copper interconnection formation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The technique of copper filling of trenches which is based on the effect of the melting temperature decrease, depending on film thickness reduction, has been proved and demonstrated experimentally. An approach to diffusion barrier creation is proposed. Ta-W-N amorphous alloy has been selected as the barrier material for copper. This barrier layer keeps its properties in the Cu/Ta-W-N/TiSi2/Si structure up to 800 °C, and in the Cu/Ta-W-N/SiO2 structure up to 850 °C. The temperature for copper filling of the trenches is shown to be significantly lower than the temperature of bulk copper melting, and to depend on the thickness of the film. It is determined that this effect is caused not only by the lowering of the phase changing temperature as a result of the thinning of the film, but also by the system tendency to optimize its form by the change in the ratio of the surface and volume energies. When the thickness is 50 nm the temperature of filling is 750 °C, when it is 100 nm – 850 °C. However, this temperature reduction is not enough for use of the presented approach in UVLI technology, and further development of this approach is required, including possible combination with other filling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Ryan, R.M. Geffken, N.R. Poulin, J.R. Paraszczak: IBM J. Res. Develop. 39 371 (1995)

    Google Scholar 

  2. S. Roehl, L. Carnilletti, W. Cote, D. Cote, E. Eckstein, K.H. Froehner, P.I. Lee, D. Restaino, G. Roeska, V. Vynorius, S. Wolff, B. Vollmer: Proc. 9th Int. VLSZ Multilevel Intercon. Conf., 22–28 (1992)

  3. B. Vollmer, T. Licata, D. Restaino, J.G. Ryan: Thin Solid Films 247, 104 (1994)

    Article  ADS  Google Scholar 

  4. B. Luther, J.F. White, C. Uzoh, T. Cacouris, J. Hummel, W. Guthrie, N. Lustig, S. Greco, N. Greco, S. Zuhoski, P. Agnello, E. Colgan, S. Mathad, L. Saraf, E.J. Weitzman, C.K. Hu, F. Kaufman, L.P. Buchwalter, S. Reynolds, C. Smart, D. Edelstein, E. Baran, S. Cohen, C.M. Knoedler, J. Malinowski, J. Horkans, H. Deligianni, J. Harper, P.C. Andricacos, J. Paraszczak, D.J. Pearson, M. Small: Proc. 10th Int. VZSI Multilevel Intercon. Conf., 15 (1993)

  5. C.W. Kaanta, S.G. Bombardier, W.J. Cote, W.R. Hill, G. Kerszykowski, H.S. Landis, D.J. Poindexter, C.W. Pollard, G.H. Ross, J.G. Ryan, S. Wolff, J.E. Cronin: Proc. 8th Int. IEEE VLSI Multilevel Interconn. Conf., 144 (1991)

  6. P. Doppelt: Microelectron. Eng. 37/38, 89 (1997)

    Google Scholar 

  7. Y.K. Ko, B.S. Seo, D.S. Park, H.J. Yang, W.H. Lee, P.J. Reucroft, J.G. Lee: Semicond. Sci. Technol. 17, 978 (2002)

    Article  ADS  Google Scholar 

  8. Y. Latsanov, R. Palmans, K. Maex: Microelectron. Eng. 50, 441 (2000)

    Article  Google Scholar 

  9. S. Dhingra, R. Sharma, P.J. George: Solid-State Electron. 43, 2231 (1999)

    Article  ADS  Google Scholar 

  10. Y. Shacham-Diamand, V.M. Dubin: Microelectron. Eng. 33, 47 (1997)

    Article  Google Scholar 

  11. J.J. Kim, S.K. Kim, Y.S. Kim: J. Electroanal. Chem. 542, 61 (2003)

    Article  Google Scholar 

  12. A. Eftekhari: Microelectron. Eng. 69, 17 (2003)

    Article  Google Scholar 

  13. The International Roadmap for Semiconductors, www.itrs.net__, 2004

  14. The International Roadmap for Semiconductors, www.itrs.net__, 2003

  15. M. Hansen, K. Anderko: Constitution of Binary Alloys (McGraw-Hill, NY, 1958)

  16. M. Volmer: Kinetik der Phasenbildung (Dresden, Leipzig 1939)

  17. O. Knecke, O. Kubaschewski, K. Hesselmann: Thermo-chemical Properties of Inorganic Substances (Springer-Verlag, Verlag Stahleiser, 2nd Ed. Berlin, Heidelberg, New York, London, Paris, Tokio, Hong-Kong, Barcelona, Budapest (1991) p. 2412

  18. C.B. Alcock, V.P. Itkin, M.K. Horrigan: Can. Metallurg. Quart. 23, 3, 309 (1984)

    Google Scholar 

  19. Y.F. Komnik: Fizika metallicheskikh plenok (Physics of Metal Films) (Atomizdat, Moscow 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.G. Gromov.

Additional information

PACS

66.30.Ny; 68.35.Rh; 68.60.Dv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromov, D., Mochalov, A., Klimovitskiy, A. et al. Approaches to diffusion barrier creation and trench filling for copper interconnection formation. Appl. Phys. A 81, 1337–1343 (2005). https://doi.org/10.1007/s00339-005-3259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3259-4

Keywords

Navigation