Skip to main content
Log in

Investigations on the behaviour of C60 as a resist in X-ray lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Oxygen-free C60 films on various substrates have been used as negative resist in X-ray lithography, yielding pure-carbon microstructures of good quality via synchrotron irradiation through an X-ray mask and subsequent development. While X-ray s induce the polymerization of C60 into insoluble product, large numbers of secondary electrons backscattered from the substrate inhibit this, which we attribute to the different cross sections of X-ray s and electrons in C60. Both electrons and X-ray s generate neutral electronically excited C60 molecules. At a low density of excited C60, as generated by X-ray s, they react predominantly with neighbouring molecules in their ground state via a 2+2-cycloaddition similar to UV polymerization. At a high density of excited C60, as generated by secondary electrons, the excited molecules are not able to react with each other due to orbital symmetry. Instead, the excited states quench each other, thus inhibiting the polymerization. The reduction of the resolution in the C60 pattern, and the inhibition of the polymerization near the interface through backscattered electrons, can be reduced by using substrate materials from which only few electrons emerge. To maintain the density of excited C60 molecules at the interface below the point where the quenching reaction prevails, low synchrotron-radiation intensities are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Nature 347, 354 (1990)

    Article  Google Scholar 

  2. L.D. Lamb, D.R. Huffman: J. Phys. Chem. Solids 54, 1635 (1993)

    Article  Google Scholar 

  3. H. Singh, M. Srivastava: Energy Sources 17, 615 (1995)

    Google Scholar 

  4. A.A. Bogdanov, D. Deinigner, G.A. Dyuzhev: Tech. Phys. 45, 521 (2000)

    Article  Google Scholar 

  5. H. Murayama, S. Tomonoh, J.M. Alford, M.E. Karpuk: Fullerene Nanotubes Carbon Nanostruct. 12, 1 (2004)

    Article  Google Scholar 

  6. A.M. Rao, P. Zhou, K. Wang, G.T. Hager, J.M. Holden, Y. Wang, W.T. Lee, X.X. Bi, P.C. Eklund, D.S. Cornett, M.A. Duncan, I.J. Amster: Science 259, 955 (1993)

    Google Scholar 

  7. M. Matus, J. Winter, H. Kuzmany: ‘Electronic Properties of Fullerenes’. In: Proc. Int. Winterschool Electronic Properties of Novel Materials (Springer, Berlin, Heidelberg, New York 1993) p. 255

  8. P. Zhou, A.M. Rao, K.A. Wang, J.D. Robertson, C. Eloi, M.S. Meier, S.L. Ren, X.X. Bi, P.C. Eklund, M.S. Dresselhaus: Appl. Phys. Lett. 60, 2871 (1992)

    Article  Google Scholar 

  9. A.M. Rao, M. Menon, K.A. Wang, P.C. Eklund, K.R. Subbaswamy, D.S. Cornett, M.A. Duncan, I.J. Amster: Chem. Phys. Lett. 224, 106 (1994)

    Article  Google Scholar 

  10. A. Nakamura, M. Ichida, T. Yajima, H. Shinohara, Y. Saitoh: J. Luminesc. 66, 383 (1995)

    Article  Google Scholar 

  11. S. Park, H. Han, R. Kaiser, T. Werninghaus, A. Schneider, D. Drews, D.R.T. Zahn: J. Appl. Phys 84, 1340 (1998)

    Article  Google Scholar 

  12. F. Cataldo: Polym. Int. 48, 143 (1999)

    Article  Google Scholar 

  13. F. Cataldo: Eur. Polym. J. 36, 653 (2000)

    Article  Google Scholar 

  14. M. Sakai, M. Ichida, A. Nakamura: Fullerene Sci. Technol. 9, 351 (2001)

    Article  Google Scholar 

  15. C.B. Eom, A.F. Hebard, L.E. Trimble, G.K. Celler, R.C. Haddon: Science 259, 1887 (1993)

    Google Scholar 

  16. T. Ishii, H. Nozawa, T. Tamamura: Microelectron. Eng. 35, 113 (1997)

    Google Scholar 

  17. S. Lätsch: Ph.D. Thesis, Physical Chemistry, University of Bonn (1996)

  18. A.F. Hebard, C.B. Eom, R.M. Fleming, Y.J. Chabal, A.J. Muller, S.H. Glarum, G.J. Pietsch, R.C. Haddon, A.M. Mujsce, M.A. Paczkowski, G.P. Kochanski: Appl. Phys. A 57, 299 (1993)

    Article  Google Scholar 

  19. J.L. He, M.H. Hon, L.C. Chang: Mater. Chem. Phys. 45, 43 (1996)

    Article  Google Scholar 

  20. C.H. Carter, V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, S.G. Muller, O. Kordina, K. Irvine, J.A. Edmond, H.S. Kong, R. Singh, S.T. Allen, J.W. Palmour: Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 61, 2 (1999)

    Google Scholar 

  21. R. Vassen, D. Stover: J. Am. Ceram. Soc. 82, 2585 (1999)

    Google Scholar 

  22. A.H. Eppstein: J. Eng. Gas Turb. Power – Trans. ASME 126, 205 (2004)

    Google Scholar 

  23. J.W. Palmour, J.A. Edmond, H.S. Kong, C.H. Carter Jr.: Physica B 185, 461 (1993)

    Google Scholar 

  24. L. Tong, M. Mehregany, L.G. Matus: Appl. Phys. Lett. 60, 2992 (1992)

    Article  Google Scholar 

  25. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns: J. Appl. Phys. 76, 1363 (1994)

    Article  Google Scholar 

  26. C.A. Zorman, A.J. Fleischman, A.S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz: J. Appl. Phys. 78, 5136 (1995)

    Article  Google Scholar 

  27. S. Boily, M. Chaker, H. Pepin, T. Kerdja, J. Vojer, A. Jean, J.C. Kieffer, P. Leung, F. Cerrina, G. Wells: J. Vac. Sci. Technol. B 9, 3254 (1991)

    Article  Google Scholar 

  28. J.A. Edmond, H.S. Kong, C.H. Carter: Physica B 185, 453 (1993)

    Google Scholar 

  29. J. Edmond, H. Kong, A. Suvorov, D. Waltz, C. Carter: Phys. Status Solidi A 162, 481 (1997)

    Article  Google Scholar 

  30. A.V. Hamza, M. Balooch, M. Moalem: Surf. Sci. 317, L1129 (1994)

  31. D. Humbird, D.B. Graves: J. Appl. Phys. 96, 65 (2004)

    Article  Google Scholar 

  32. S.C. Ahn, S.Y. Hang, J.L. Lee, J.H. Moon, B.T. Lee: Met. Mater. Int. 10, 103 (2004)

    Google Scholar 

  33. S. Henke, B. Stritzker, B. Rauschenbach: J. Appl. Phys. 78, 2070 (1995)

    Article  Google Scholar 

  34. A.V. Hamza, M. Balooch, R.J. Tench, M.A. Schildbach, R.A. Hawley-Fedder, H.W.H. Lee, C. McConaghy: J. Vac. Sci. Technol. B 11, 763 (1993)

    Article  Google Scholar 

  35. K. Volz, S. Schreiber, J.W. Gerlach, W. Reiber, B. Rauschenbach, B. Strizker, W. Assmann, W. Ensinger: Mater. Sci. Eng. A 189, 255 (2000)

    Article  Google Scholar 

  36. L. Aversa, R. Verucchi, G. Ciullo, L. Ferrari, P. Moras, M. Pedio, A. Pesci, S. Iannotta: Appl. Surf. Sci. 184, 350 (2001)

    Article  Google Scholar 

  37. L. Aversa, R. Verucchi, M. Pedio, S. Iannotta: Mater. Sci. Forum 433434, 237 (2002)

    Google Scholar 

  38. L. Aversa, R. Verucchi, A. Boschetti, A. Podesta, P. Milani, S. Iannotta: Mater. Sci. Eng. B 101, 169 (2003)

    Article  Google Scholar 

  39. D. Chen, R. Workman, D. Sarid: Surf. Sci. 344, 23 (1995)

    Article  Google Scholar 

  40. L. Moro, A. Paul, D.C. Lorents, R. Malhotra, R.S. Ruoff, L. Jiang, G.W. Stupian, K.J. Wu, S. Subramoney: Appl. Surf. Sci. 119, 76 (1997)

    Article  Google Scholar 

  41. S. Büttgenbach: Mikromechanik: Einführung in Technologie und Anwendungen, 2. Aufl. (Teubner, Stuttgart 1994) pp. 56–71 and 102–123

  42. H. Krämer: Ph.D. Thesis, Physical Chemistry, University of Bonn (1998)

  43. F. Cataldo: Fullerene Sci. Technol. 8, 577 (2000)

    Google Scholar 

  44. K.H. Althoff: Part. Accel. 27, 101 (1990)

    Google Scholar 

  45. E.W. Becker, W. Ehrfeld, D. Münchmeyer: KVT Ber. 88/32, Kernforschungszentrum Karlsruhe GmbH (1984)

  46. O. Knüppel, D. Kadereit, B. Neff, J. Hormes: Rev. Sci. Instrum. 63, 757 (1992)

    Article  Google Scholar 

  47. B. Maid: Ph.D. Thesis, Physics, University of Bonn (1988)

  48. P. Ottersbach: Diploma Thesis, Physical Chemistry, University of Bonn (1990)

  49. C. Heil: Diploma Thesis, Physical Chemistry, University of Bonn (1996)

  50. H. Zumaqué, G.A. Kohring, J. Hormes: J. Micromech. Microeng. 7, 79 (1997)

    Article  Google Scholar 

  51. P. Zhou, Z.H. Dong, A.M. Rao, P.C. Eklund: Chem. Phys. Lett. 211, 337 (1993)

    Article  Google Scholar 

  52. Y.B. Zhao, D.M. Poirier, R.J. Pechman, J.H. Weaver: Appl. Phys. Lett. 64, 577 (1994)

    Article  Google Scholar 

  53. Y.S. Gordeev, V.M. Mikoushkin, V.V. Shnitov: Mol. Mater. 13, 1 (2000)

    Google Scholar 

  54. M.O. Krause: J. Phys. Chem. Ref. Data 8, 307 (1979)

    Google Scholar 

  55. A.J. Swallow: Radiation Chemistry of Organic Compounds, 1st edn. (Pergamon, Oxford 1960) pp. 1–22

  56. E. Rexer, L. Wuckel: Chemische Veränderungen von Stoffen durch energiereiche Strahlung, 1st edn. (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1965) pp. 45–82

  57. J.W.T. Spinks, R.J. Woods: An Introduction to Radiation Chemistry, 1st edn. (Wiley, New York 1964) pp. 39–77 and 127–158

  58. A. Charlesby: Atomic Radiation and Polymers, 1st edn. (Pergamon, Oxford 1960) pp. 1–51, 183–197, and 441–520

  59. A.V. Topchiev: Radiolysis of Hydrocarbons, 1st edn. (Elsevier, Amsterdam 1964) pp. 1–20 and 124–147

  60. A. Henglein, W. Schnabel, J. Wendenburg: Einführung in die Strahlenchemie, 1st edn. (Verlag Chemie GmbH, Weinheim 1969) pp. 49–102

  61. L. Bittman, M. Furst, H. Kallmann: Phys. Rev. 87, 83 (1952)

    Article  Google Scholar 

  62. G.T. Wright: Phys. Rev. 91, 1282 (1953)

    Article  Google Scholar 

  63. H. Kallmann, G.J. Brucker: Phys. Rev. 108, 1122 (1957)

    Article  Google Scholar 

  64. I.B. Berlman, R. Grismore, B.G. Oltman: Trans. Faraday Soc. 59, 2010 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bargon.

Additional information

PACS

81.05.Tp; 82.50.-m; 85.40.Hp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klesper, H., Baumann, R., Bargon, J. et al. Investigations on the behaviour of C60 as a resist in X-ray lithography. Appl. Phys. A 80, 1469–1479 (2005). https://doi.org/10.1007/s00339-004-3139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3139-3

Keywords

Navigation