Skip to main content
Log in

Strain-enhanced sintering of iron powders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in γ-Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.V. Lenel: Powder Metallurgy (Metal Powder Industries Federation, Princeton 1980) p. 257

  2. P. Lanyi, W. Hermel: Powder Metall. 24, 93 (1981)

    Article  Google Scholar 

  3. W. Schätt, E. Friedrich: Powder Metall. 28, 140 (1983)

    Article  Google Scholar 

  4. W. Schätt, E. Friedrich, D. Joensson: Acta Metall. 31, 121 (1983)

    Article  Google Scholar 

  5. R. Sundaresan, A.C. Raghuram, R.M. Mallya, K.I. Vasu: Powder Metall. 39, 140 (1996)

    Article  Google Scholar 

  6. R.M. German: Powder Metallurgy Science, 2nd edn. (Metal Powder Industries Federation, Princeton 1994) p. 242

  7. R. Krauser, W. Schatt, B. Vetter, A. Polity: Cryst. Res. Technol. 25, 819 (1990)

    Article  Google Scholar 

  8. R. Pareja, R. de la Cruz, L. Díaz: J. Mater. Sci. 26, 593 (1991)

    Article  ADS  Google Scholar 

  9. T.E.M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback: J. Phys.: Condens. Matter 11, 1757, 1787, 1807 (1999)

    ADS  Google Scholar 

  10. H.E. Schaefer, R. Wurschum, R. Birringer, H. Gleiter: Phys. Rev. B 38, 9545 (1988)

    Article  ADS  Google Scholar 

  11. M. Eldrup, N.J. Pedersen, B. Larsen, M.D. Bentzon, S. Linderoth: Mater. Sci. Forum 105, 1553 (1992)

    Article  Google Scholar 

  12. D. Segers, S. van Petegem, J.F. Loffler, H. Van Swygenhoven, W. Wagner, C. Dauwe: Nanostruct. Mater. 12, 1059 (1999)

    Article  Google Scholar 

  13. J. Kuriplach, S. van Petegem, M. Hou, E.E. Zhurkin, H. van Swygenhoven, F. Dalla Torre, G. van Tendeloo, M. Yandouzi, D. Schryvers, D. Segers, A.L. Morales, S. Ettaoussi, C. Dauwe: Mater. Sci. Forum 363, 94 (2001)

    Article  Google Scholar 

  14. T.E.M. Staab, R. Krause-Rehberg, B. Kieback: J. Mater. Sci. 34, 3833 (1999)

    Article  ADS  Google Scholar 

  15. O. Dominguez, J. Bigot: Nanostruct. Mater. 6, 877 (1995)

    Article  Google Scholar 

  16. O. Dominguez, Y. Champion, J. Bigot: Metall. Mater. Trans. 24, 2941 (1998)

    Article  Google Scholar 

  17. F. Richter: Z. Angew. Phys. 6, 367 (1970)

    Google Scholar 

  18. P. Kirkegaard, N.J. Pedersen, M. Eldrup: PATFIT-88 (Risφ M-2740) (1989)

  19. G.K. Williamson, W.H. Hall: Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  20. W. Beere: Vacancies’76, ed. by R.E. Smallman, J.E. Harris (The Metals Society, London 1977) p. 149

  21. B. Wong, J.A. Pask: J. Am. Ceram. Soc. 62, 138 (1979)

    Article  Google Scholar 

  22. H.J. Frost, M.F. Ashby: Deformatiom-mechanism Maps (Pergamon, Oxford 1982) p. 62

  23. M.J. Puska: J. Phys.: Condens. Matter 3, 3455 (1991)

    ADS  Google Scholar 

  24. A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila: Phys. Rev. B 25, 762 (1982)

    Article  ADS  Google Scholar 

  25. Ch. Hubner, T. Staab, R. Krauser-Rehberg: Appl. Phys. A 61, 203 (1995)

    Article  ADS  Google Scholar 

  26. M. Eldrup, N.J. Pedersen, S.A. Sethi, A.S. Pedersen, B. Larsen: Mater. Sci. Forum 175, 149 (1995)

    Article  Google Scholar 

  27. J.P. Hirth, J. Lothe: Theory of Dislocations, 2nd edn. (Wiley, New York 1992) Chap. 15

  28. M. Cohen: Trans. JIM 11, 145 (1970)

    Google Scholar 

  29. E. Bonetti, L. del Bianco, L. Pasquini, E. Sampaolesi: Nanostruct. Mater. 12, 685 (1999)

    Article  Google Scholar 

  30. S. van Petegem, J. Kuriplach, M. Hou, E.E. Zhurkin, D. Segers, A.L. Morales, S. Ettaoussi, C. Dauwe, W. Mondelaers: Mater. Sci. Forum 363, 210 (2001)

    Article  Google Scholar 

  31. Y. Kamimura, T. Tsutsumi, E. Kuramoto: Phys. Rev. B 52, 879 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Monge.

Additional information

PACS

81.20.Ev; 81.20.Wk; 78.70.Bj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amador, D., Monge, M., Torralba, J. et al. Strain-enhanced sintering of iron powders. Appl. Phys. A 80, 803–811 (2005). https://doi.org/10.1007/s00339-004-2546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2546-9

Keywords

Navigation