Skip to main content
Log in

Convergence of electron kinetic, two-temperature, and one-temperature models for laser short-pulse heating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The laser short-pulse heating of metallic workpieces initiates the non-equilibrium heating in the surface vicinity of the substrate. The material response to the non-equilibrium heating cannot be predicted accurately by the one-temperature model. Consequently, new models pertinent to laser short-pulse heating are needed. In the present study, laser short-pulse heating of gold, copper, and lead is considered. The material responses to the laser short-pulse due to the electron kinetic theory and the two-temperature and the one-temperature models are examined in detail. The differences between the collisional and diffusional heating mechanisms are presented. The conditions for the convergence of conduction mechanisms are discussed. The electron kinetic theory, the two-temperature, and the one-temperature predictions are compared for three substrates. It is found that the electron kinetic theory predictions differ from the predictions of the one-temperature model in the surface vicinity of the substrate during the early heating duration. As the heating progresses, both models predict similar temperature profiles. The electron kinetic theory and the two-temperature model predictions are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Anisimov, A.M. Bonch-Bruevich, M.A. Al’yashevich, Y.A. Imas, N.A. Pavlenko, G.S. Romanov: Sov. Phys.-Tech. Phys. 7, 945 (1967)

    Google Scholar 

  2. G.L. Eesley: Phys. Rev. B 33, 2144 (1986)

    Article  ADS  Google Scholar 

  3. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao: Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  4. J.J. Klossika, U. Gratzke, M. Vicanek, G. Simon: Phys. Rev. B 54, 10277 (1996)

    Article  ADS  Google Scholar 

  5. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou: Phys. Rev. Lett. 58, 1210 (1987)

    Article  ADS  Google Scholar 

  6. H.J. Zhang: ASME J. Heat Transfer 112, 777 (1990)

    Article  Google Scholar 

  7. B.S. Yilbas: Int. J. Mech. Sci. 39, 671 (1997)

    Article  Google Scholar 

  8. M.J. Hsu, P.A. Molian: ASME, J. Eng. Ind. 117, 272 (1995)

    Article  Google Scholar 

  9. B.S. Yilbas, M. Sami, F. Al-Ferayedhi: Inst. Mech. Eng. C: J. Mech. Eng. Sci. 212, 141 (1998)

    Article  Google Scholar 

  10. Y. Lu: Appl. Surf. Sci. 81, 357 (1994)

    Article  ADS  Google Scholar 

  11. B.S. Yilbas: Res. Mechanica 24, 377 (1988)

    Google Scholar 

  12. R.E. Harrington: J. Appl. Phys. 38, 3266 (1967)

    Article  ADS  Google Scholar 

  13. S.I: Anisimov, B.L. Kapeliovich, T.L.Perel’man: Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  14. G.L. Eesley: Ultrafast Phenomena IV, ed. by D.H. Auston, K.B. Eisenthal (1984) pp. 143–146

  15. T.Q. Qiu, L. Tien: Int. J. HeatMass Transfer 35, 719 (1992)

    Article  ADS  Google Scholar 

  16. D.Y. Tzou: ASME, J. Heat Transfer 117, 8 (1995)

    Article  Google Scholar 

  17. B.S. Yilbas: Int. J. Eng. Sci. 24, 1325 (1986)

    Article  Google Scholar 

  18. B.S. Yilbas, S.Z. Shuja: J. Phys. D: Appl. Phys. 32, 1947 (1999)

    Article  ADS  Google Scholar 

  19. B.S. Yilbas, A.Z. Sahin: Jpn. J. Appl. Phys. 32, 5646 (1993)

    Article  ADS  Google Scholar 

  20. D.Y. Tzou: Macro-to-microscale Heat Transfer (Taylor and Francis, Washington 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.S. Yilbas.

Additional information

PACS

44.10.+i; 42.62.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilbas, B. Convergence of electron kinetic, two-temperature, and one-temperature models for laser short-pulse heating. Appl Phys A 79, 1775–1782 (2004). https://doi.org/10.1007/s00339-004-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-0430-2

Keywords

Navigation