Skip to main content
Log in

Model for the hydrogen adsorption on carbon nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28×10-3 mass % S[m2g-1]=3.0 mass % for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5 mass % and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5×10-3 mass %/m2g-1. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2 mass %. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. N. Hamada, S. Sawada, A. Oshiyama: Phys. Rev. Lett. 68, 54 (1992)

    Article  Google Scholar 

  3. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, NY 1996)

  4. F. Darkrim, D. Levesque: J. Chem. Phys. 109, 4981 (1998)

    Article  ADS  Google Scholar 

  5. S. Brunauer, P.H. Emmett, E. Teller: J. Amer. Chem. Soc. 60, 309 (1938)

    Article  ADS  Google Scholar 

  6. F. London: Z. Physik. 63, 245 (1930); Z. Physik. Chem. 11, 222 (1930)

    Article  ADS  Google Scholar 

  7. G. Stan, M.W. Cole: Low Temp. Phys. 100, 539 (1998)

    Article  ADS  Google Scholar 

  8. Handbook of Chemistry and Physics, ed. by D.R. Linde, 76th. ed. (CRC Press, 1995–1996)

  9. M. Rzepka, P. Lamp, M.A. de la Casa-Lillo: J. Phys. Chem. B102, 10849 (1998)

    Google Scholar 

  10. K.A. Williams, P.C. Eklund: Chem. Phys. Lett. 320, 352 (2000)

    Article  ADS  Google Scholar 

  11. A.C. Switendick: Z. Phys. Chem. N.F. 117, 89 (1979)

    Article  Google Scholar 

  12. R. Ströbel, L. Jörissen, T. Schliermann, V. Trapp, W. Schütz, K. Bohmhammel, G. Wolf, J. Garche: J. Power Sources 84, 221 (1999)

    Article  Google Scholar 

  13. M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, K.P. de Jong: Appl. Phys. A 72, 619 (2001)

    Article  ADS  Google Scholar 

  14. C. Nützenadel, A. Züttel, L. Schlapbach: Electronic Properties of Novel Materials, Science and Technology of Molecular Nanostructures, ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Amer. Inst. Phys., NY 1999), p. 462

  15. C. Nützenadel, A. Züttel, C. Emmenegger, P. Sudan, L. Schlapbach: Sciences and Applications of Nanotubes, Fundamental Materials Research Series, ed. by M.F. Thorpe (Kluwer Academic Publ./Plenum Press) p. 205

  16. A. Züttel, P. Sudan, P. Mauron, C. Emmenegger, T. Kiyobayashi, L. Schlapbach: J. Metastable and Nanocrystalline Materials 11, 95 (2001)

    Article  Google Scholar 

  17. S.M. Lee, K.S. Park, Y.C. Choi, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee: Synthetic Metals 113, 209 (2000)

    Article  Google Scholar 

  18. S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim: J. Korean Phys. Soc. 38, 686 (2001); S.M. Lee, Y.H. Lee: Appl. Phys. Lett. 76, 2879 (2000)

    Google Scholar 

  19. J. Weitkamp, M. Fritz, S. Ernst: Int. J. Hydrogen Energy 20, 967 (1995)

    Article  Google Scholar 

  20. H.W. Langmi, A. Walton, M.M. Al-Mamouri, S.R. Johnson, D. Book, J.D. Speight, P.P. Edwards, I. Gameson, P.A. Anderson, I.R. Harris: J. Alloys Compd. 356357, 710–715 (2003)

  21. S. Orimo, G. Majer, T. Fukunaga, A. Züttel, L. Schlapbach, H. Fujii: Appl. Phys. Lett. 75, 3093 (1999)

    Article  ADS  Google Scholar 

  22. S. Orimo, T. Matsushima, H. Fujii, T. Fukunaga, G. Majer: J. Appl. Phys. 90, 1545 (2001)

    Article  ADS  Google Scholar 

  23. A. Züttel, C. Nützenadel, P. Sudan, P. Mauron, C. Emmenegger, S. Rentsch, L. Schlapbach, A. Weidenkaff, T. Kiyobayashi: J. Alloys and Compounds 1, 676 (2002)

    Article  Google Scholar 

  24. P. Ruffieux, O. Groning, M. Bielmann, P. Mauron, L. Schlapbach, P. Groning: Phys. Rev. B 66, 245416 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Züttel.

Additional information

PACS

81.05.Uw; 81.07.De; 82.33.Pt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Züttel, A., Sudan, P., Mauron, P. et al. Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 78, 941–946 (2004). https://doi.org/10.1007/s00339-003-2412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2412-1

Keywords

Navigation