Skip to main content
Log in

Monitoring nanoparticle formation during laser ablation of graphite in an atmospheric-pressure ambient

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Excimer laser ablation of highly oriented pyrolytic graphite (HOPG) was performed at atmospheric pressure in an N2 and in an air ambient. During the ablation, nanoparticles condensed from the material ejecta, and their size distribution was monitored in the gas phase by a Differential Mobility Analyzer (DMA) in combination with a Condensation Particle Counter (CPC). Size distributions obtained at different laser repetition rates revealed that the interaction between subsequent laser pulses and formed particles became significant above ∼15 Hz. This interaction resulted in laser heating, leading to considerable evaporation and a decrease in the size of the particles. X-ray photoelectron spectroscopy revealed that approximately 8% nitrogen was incorporated into the CNx particles generated in the N2 ambient, and that the nitrogen was mostly bonded to sp3-hybridized carbon. Monodisperse particles were also deposited and were analyzed by means of Raman spectroscopy to monitor size-induced effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Kodama: J. Magn. Magn. Mater. 200, 359 (1999)

    Article  ADS  Google Scholar 

  2. H. Gleiter: Acta Mater. 48, 1 (2000)

    Article  Google Scholar 

  3. T. Trindade, P. O’Brien, N.L. Pickett: Chem. Mater. 13, 3843 (2001)

    Article  Google Scholar 

  4. M.J. Yacamán, J.A. Ascencio, H.B. Liu, J. Gardea-Torresday: J. Vac. Sci. Technol. B 19, 1091 (2001)

    Article  Google Scholar 

  5. A.S. Edelstein, J.S. Murday, B.B. Rath: Prog. Mater. Sci. 42, 5 (1997)

    Article  Google Scholar 

  6. J. Eckert, J.C. Holzer, C.E. Krill III, W.L. Johnson: J. Mater. Res. 7, 1751 (1992)

    Article  ADS  Google Scholar 

  7. A. Huczko: Appl. Phys. A 70, 365 (2000)

    Article  ADS  Google Scholar 

  8. C.J. Brinker, G.W. Scherer: Sol–gel Science (Academic Press, Boston 1990)

  9. H. Hahn: Nanostruct. Mater. 9, 3 (1997)

    Article  Google Scholar 

  10. D.B. Chrisey, G.K. Hubler (Eds.): Pulsed Laser Deposition of Thin Films (John Wiley, New York 1994)

  11. D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau: Science 273, 898 (1996)

    Article  ADS  Google Scholar 

  12. K. Moorjani, J. Bohandy, F.J. Adrian, B.F. Kim, R.D. Schull, C.K. Chiang, L.J. Schwartzendruber, L.H. Bennett: Phys. Rev. B 36, 4036 (1987)

    Article  ADS  Google Scholar 

  13. Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara: J. Appl. Phys. 88, 6861 (2000)

    Article  ADS  Google Scholar 

  14. Á. Mechler, P. Heszler, Z. Kantor, T. Szörenyi, Z. Bor: Appl. Surf. Sci. 138139, 174 (1999)

  15. R.J. Lade, F. Claeyssens, K.N. Rosser, M.N.R. Ashfold: Appl. Phys. A 69, 935 (1999)

    Article  ADS  Google Scholar 

  16. Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara: J. Appl. Phys. 86, 4154 (1999)

    Article  ADS  Google Scholar 

  17. T. Shinozaki, T. Ooie, Y. Yano, M. Yoneda: Jpn. J. Appl. Phys., Part 1 39, 6272 (2000)

    Article  ADS  Google Scholar 

  18. Á. Mechler, P. Heszler, Zs. Márton, M. Kovacs, T. Szörenyi, Z. Bor: Appl. Surf. Sci. 154155, 22 (2000)

  19. M.D. Shirk, P.A. Molian: Carbon 39, 1183 (2001)

    Article  Google Scholar 

  20. A.A. Voevodin, J.G. Jones, J.S. Zabinski, L. Hultman: J. Appl. Phys. 92, 724 (2002)

    Article  ADS  Google Scholar 

  21. T. Szörenyi, J.-P. Stoquert, J. Perriere, F. Antoni, E. Fogarassy: Diam. Relat. Mater. 10, 2107 (2001)

    Article  ADS  Google Scholar 

  22. R.R. Whitlock, G.M. Frick: J. Mater. Res. 9, 2868 (1994)

    Article  ADS  Google Scholar 

  23. Y. Kawakami, T. Seto, E. Ozawa: Appl. Phys. A 69, S249 (1999)

  24. T. Makino, N. Suzuki, Y. Yamada, T. Yoshida, T. Seto, N. Aya: Appl. Phys. A 69, S243 (1999)

  25. L. Landström, Zs. Márton, N. Arnold, H. Högberg, M. Boman, P. Heszler: J. Appl. Phys. 94, 2011 (2003)

    Article  ADS  Google Scholar 

  26. Zs. Márton, L. Landström, P. Heszler: Appl. Phys. A, DOI 10.1007/ s00339-003-2451-7, in press

  27. Zs. Márton, L. Landström, M. Boman, P. Heszler: Mater. Sci. Eng. C 23, 225 (2003)

    Article  Google Scholar 

  28. R. Windholz, P.A. Molian: J. Mater. Sci. 32, 4295 (1997)

    Article  ADS  Google Scholar 

  29. D. Bäuerle: Laser Processing and Chemistry (Springer Verlag, Berlin 2000)

  30. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, S. Iijima: Appl. Phys. A 69, S223 (1999)

  31. L. Landström, P. Heszler: unpublished

  32. L. Landström, J. Kokavecz, J. Lu, P. Heszler: unpublished

  33. D.L. Swift, S.K. Friedlander: J. Colloid Sci. 19, 621 (1964)

    Article  Google Scholar 

  34. E. Klots: Z. Phys. D 20, 105 (1991)

    Article  ADS  Google Scholar 

  35. M.W. Chase (Ed.): NIST–JANAF Thermochemical Tables (American Institute of Physics, U.K. 2000)

  36. D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton 1990)

  37. N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, J.-E. Sundgren: Phys. Rev. B 59, 5162 (1999)

    Article  ADS  Google Scholar 

  38. L. Landström, H. Högberg, M. Boman, P. Heszler: to be published

  39. D.S. Knight, W.B. White: J. Mater. Res. 4, 385 (1988)

    Article  ADS  Google Scholar 

  40. P. Heszler, J.-O. Carlsson, J. Lu: Appl. Surf. Sci. 109110, 457 (1997)

  41. J.P. Perdew: Phys. Rev. B 37, 6175 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Landström.

Additional information

PACS

81.07.-b; 61.46.+w; 79.70.+q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landström, L., Márton, Z., Boman, M. et al. Monitoring nanoparticle formation during laser ablation of graphite in an atmospheric-pressure ambient. Appl. Phys. A 79, 537–542 (2004). https://doi.org/10.1007/s00339-003-2364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2364-5

Keywords

Navigation