Skip to main content

Advertisement

Log in

Ultraviolet laser surface treatment for biomedical applications of β titanium alloys: morphological and structural characterization

  • Regular Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To improve the surface properties of β titanium alloys developed for biomedical applications we have recently suggested a methodology involving laser-assisted nanostructuration. This strategy would benefit from superficial laser heat treatment since laser annealing displays many advantages as compared to the conventional methods: high resolution, high operating speed, low cost and retaining the initial bulk properties. Therefore, this paper reports results concerning the laser treatment of β titanium alloys under vacuum. Our interest has been focused on the excimer laser single-pulse irradiation (λ=248 nm) of a model β titanium alloy (Ti6.8Mo4.5Fe1.5Al). The threshold laser fluences corresponding to β transus, melting and ablation temperatures as well as the resulting modification depth were first approached theoretically. KrF laser annealings were then carried out in vacuum, varying the fluence conditions from submelting heating to ablation regimes. Subsequent atomic force microscopy and scanning electron microscopy observations were performed to follow the structural and topographical modifications of as-treated specimens and were then discussed as regards the above-mentioned theoretical parameters .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Steinemann: In Surface Reaction of Titanium in Living Tissue, ed. by J.K. Gregory, H.J. Rack, D. Eylon (The Minerals, Metals and Materials Society, San Diego 1997)

  2. J. Breme: Mem. Etud. Sci. Rev. Metall. 625 (1989)

  3. U. Diebold: Surf. Sci. Rep. 48, 53 (2003)

    Article  Google Scholar 

  4. D.G. Castner, B.D. Ratner: Surf. Sci. 500, 28 (2002)

    Article  Google Scholar 

  5. B. Kasemo: Surf. Sci. 500, 656 (2002)

    Article  Google Scholar 

  6. A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D. McKee: J. Biomed. Mater. Res. 40, 324 (1998)

    Article  Google Scholar 

  7. K. Anselme, M. Bigerelle, B. Noel, A. Iost, P. Hardouin: J. Biomed. Mater. Res. 60, 529 (2002)

    Article  Google Scholar 

  8. A. Curtis, C. Wilkinson: Biomaterials 18, 1573 (1997)

    Article  Google Scholar 

  9. M. Long, H.J. Rack: Biomaterials 19, 1621 (1998)

    Article  Google Scholar 

  10. F. Guillemot, F. Prima, R. Bareille, D. Ansel, C. Baquey, T. Gloriant: Biomaterials (submitted)

  11. F. Guillemot, F. Prima, M.C. Porte-Durrieu, S. Lazare, V.N. Tokarev, C. Belin, D. Ansel, C. Baquey: In Proc. 28th Annual Meet. Society for Biomaterials, Tampa, USA (2002) p. 554

  12. P. Baeri: Philos. Mag. B 61, 587 (1990)

    Google Scholar 

  13. P. Baeri: Mater. Sci. Eng. A Struct. 178, 179 (1994)

    Article  Google Scholar 

  14. S.Z. Lee, H.W. Bergmann: In Proc. 6th World Conf. Titanium, Paris (1988) p. 1811

  15. T.M. Yue, T.M. Cheung, H.C. Man: J. Mater. Sci. Lett. 19, 205 (2000)

    Article  Google Scholar 

  16. S. Mridha, T.N. Baker: Mater. Sci. Eng. A Struct. 142, 115 (1991)

    Article  Google Scholar 

  17. E. Gyorgy, A. Perez del Pino, P. Serra, J.L. Morenza: Appl. Surf. Sci. 197198, 851 (2002)

    Google Scholar 

  18. E. Gyorgy, I.N. Mihailescu, P. Serra, A. Perez del Pino, J.L. Morenza: Surf. Coat. Technol. 154, 63 (2002)

    Article  Google Scholar 

  19. T.R. Jervis, T.G. Zocco, K.M. Hubbard, M. Nastasi: Metall. Mater. Trans. A 24, 215 (1993)

    Google Scholar 

  20. T.R. Jervis, T.G. Zocco, K.M. Hubbard, M. Nastasi: Mater. Res. Soc. Symp. Proc. 308, 549 (1993)

    Google Scholar 

  21. S. Tosto, A.D. Bartolomeo, P.D. Lazarro: Appl. Phys. A 63, 385 (1996)

    Article  Google Scholar 

  22. F. Villermaux, M. Tabrizian, L.H. Yahia, M. Meunier, D.L. Piron: Appl. Surf. Sci. 109110, 62 (1997)

    Google Scholar 

  23. H.W. Bergmann, K. Schutte: In Excimer Laser Beam Interaction with Metals and Ceramics, Part II: Materials Aspects and Applications, ed. by L.D. Laude (Kluwer, The Netherlands 1994)

  24. K. Schutte, H.W. Bergmann: In Excimer Laser Beam Interactions with Metals and Ceramics, Part I: Fundamental Aspects, ed. by L.D. Laude (Kluwer, The Netherlands 1994)

  25. F. Prima, J. Debuigne, M. Boliveau, D. Ansel: J. Mater. Sci. Lett. 19, 2219 (2000)

    Article  Google Scholar 

  26. S. Lazare, J. Lopez, F. Weisbuch: Appl. Phys. A 69, 1 (1999)

    Article  Google Scholar 

  27. H.S. Carslaw, J.C. Jeager: Conduction of Heat in Solids (Oxford University Press, Oxford 1959)

  28. M. Kalyon, B.S. Yilbas: Opt. Laser Eng. 39, 109 (2003)

    Article  Google Scholar 

  29. D.R. Lide (Ed.): Handbook of Chemistry and Physics, 71st edn. (CRC, Boca Raton 1990)

  30. V.N. Tokarev, A.F.H. Kaplan: J. Appl. Phys. 86, 2836 (1999)

    Article  Google Scholar 

  31. H. Guo, M. Enomoto: Acta Mater. 50, 929 (2002)

    Article  Google Scholar 

  32. L. Seraphin: Mem. Etud. Sci. Rev. Metall. LXII, 291 (1965)

  33. F. Weisbuch, V.N. Tokarev, S. Lazare, D. Débarre: Appl. Phys. A 76, 613 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guillemot .

Additional information

PACS

81.05.-t; 68.37.Ps; 68.55.Jk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemot , F., Prima , F., Tokarev , V. et al. Ultraviolet laser surface treatment for biomedical applications of β titanium alloys: morphological and structural characterization. Appl Phys A 77, 899–904 (2003). https://doi.org/10.1007/s00339-003-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2162-0

Keywords

Navigation