Skip to main content
Log in

Substrate-independent sulfur-activated dielectric and barrier-layer surfaces to promote the chemisorption of highly polarizable metallorganics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel plasma-based process has been invented in which sulfur is used to enhance the chemisorption of highly polarizable metallorganics to dielectric or barrier-layer surfaces. Three fundamentally different substrates were investigated: metal oxides (air-exposed Ta and SiO2), a hybrid dielectric (Trikon) and a polymeric material (SiLK). All the surfaces could be modified with relative ease, resulting in a substrate-independent process. Further, palladium (II) hexafluoroacetyl- acetonate was dosed on the substrates under study at sublimation and substrate temperatures of 34.8 °C and 175 °C. Results show that increased rf power and decreased system pressure during sulfur deposition result in a larger relative percent reduced sulfur, at for example, the SiO2 surface. In turn, this results in more palladium chemisorbed to the surface from a larger Pd 3d/Si 2p ratio. Rutherford backscattering spectrometry was used to estimate a sulfur areal density of approximately 1×1015 atoms/cm2 on air-exposed Ta, when sulfur was deposited via H2S and He in the range of 300 W to 700 W rf power at 60 mTorr. It was shown that the sulfur-activated surfaces are stable under ambient conditions. Also, after the sulfur-activated SiO2 surface was dosed with PdII(hfac)2, the S 2p X-ray photoelectron spectroscopy spectrum shifts from 163.7 eV (before dosing) to 162.8 eV (after dosing), which gives evidence of Pd-S interfacial bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Li, Y. Shacham-Diamond, J.W. Mayer: Mater. Sci. Reports 9, 1 (1992)

    Article  Google Scholar 

  2. H.H. Hsu, K.H. Lin, S.J. Lin, J.W. Yeh: J. Electrochem. Soc. 148, C47 (2001)

    Article  Google Scholar 

  3. K.C. Shim, H.B. Lee, O.K. Kwon, H.S. Park, W. Koh, S.W. Kang: J. Electrochem. Soc. 149, G109 (2002)

    Article  Google Scholar 

  4. M. Schildenberger, R. Prins, Y.C. Bonetti: J. Phys. Chem. 104, 3250 (2000)

    Article  Google Scholar 

  5. N.E. Fernandes, S.M. Fisher, J.C. Pshusta, D.G. Vlachos, M. Tsapatsis, J.J. Watkins: Chem. Mater. 13, 2023 (2001)

    Article  Google Scholar 

  6. G.B. Hoflund, Z. Li, T.J. Campbell, W.S. Epling, H.W. Hahn: Mater. Res. Soc. Symp. Proc. 581, 449 (2000)

    Article  Google Scholar 

  7. S. Busse, J. Kashammer, S. Kramer, S. Mittler: Sens. Actuators B 60, 148 (1999)

    Article  Google Scholar 

  8. J.J. Senkevich, G.R. Yang, T.M. Lu, T.S. Cale, C. Jezewski, W.A. Lanford: Chem. Vapor Dep. 8, 189 (2002)

    Article  Google Scholar 

  9. P. Martensson, J.O. Carlsson: J. Electrochem. Soc. 145, 2926 (1998)

    Article  Google Scholar 

  10. K. Shepherd, J. Kelber: Appl. Surf. Sci. 151, 287 (1999)

    Article  ADS  Google Scholar 

  11. R. Solanki, B. Pathangey: Electrochem. Solid State Lett. 3, 479 (2000)

    Article  Google Scholar 

  12. N.S. Borgharkar, G.L. Griffin, A. James, A.W. Maverick: Thin Solid Films 320, 86 (1998)

    Article  ADS  Google Scholar 

  13. J.Y. Kim, Y.K. Lee, H.S. Park, J.W. Park, D.K. Park, J.H. Joo, W.H. Lee, Y.K. Ko, P.J. Reucroft, B.R. Cho: Thin Solid Films 330, 190 (1998)

    Article  ADS  Google Scholar 

  14. D. Yang, J. Hong, D.F. Richards, T.S. Cale: J. Vac. Sci. Technol. B 20, 495 (2002)

    Article  Google Scholar 

  15. H. Lu, H. Cui, I. Bhat, S. Murarka, W. Lanford, W.J. Hsia, W. Li: J. Vac. Sci. Technol. B 20, 828 (2002)

    Article  Google Scholar 

  16. A. Rajagopal, C. Gregoire, J.J. Lemaire, J.J. Pireaux, M.R. Baklanov, S. Vanhaelemeersch, K. Maex, J.J. Waeterloos: J. Vac. Sci. Technol. B 17, 2336 (1999)

    Article  Google Scholar 

  17. Y.T. Shy, S.P. Murarka, C.L. Shepard, W.A. Lanford: Mater. Res. Soc. Symp. Proc. 181, 537 (1990)

    Article  Google Scholar 

  18. Y.F. Zhang, L.S. Liao, W.H. Chan, S.T. Lee, R. Sammynaiken, T.K. Sham: Phys. Rev. B 61, 8298 (2000)

    Article  ADS  Google Scholar 

  19. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, ed. by J. Chastain, R.C. King Jr. (Physical Electronics, Eden Prairie, MN 1995)

  20. R. Lenigk, M. Carles, N.Y. Ip, N.J. Sucher: Langmuir 17, 2497 (2001)

    Article  Google Scholar 

  21. T.L. Barr: Modern ESCA: The Principles and Practice of X-ray Photoelectron Spectroscopy (CRC Press, Boca Raton, FL 1994)

  22. M.P. Seah: In: Practical Surface Analysis, 2nd edn., ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) chapt. 5

  23. B.J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlmann, C. Nordling, K. Siegbahn: Phys. Scr. 1, 286 (1970)

    Article  ADS  Google Scholar 

  24. B. Chapman: Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York 1980) pp. 143–146

  25. M.C. Sneed: In: Comprehensive Inorganic Chemistry, Vol. 7, ed. by M.C. Sneed, J.L. Maynard, R.C. Brasted (Van Nostrand, New York 1953–1961)

  26. G.W. McGuire, G.K.K. Schweitzer, T.A. Carlson: Inorg. Chem. 12, 953 (1973)

    Article  Google Scholar 

  27. V.I. Nefedov, M.N. Firsov, I.S. Shaplygin: J. Electron. Spectrosc. Relat. Phenom. 26, 65 (1982)

    Article  Google Scholar 

  28. K. Dartigeas, L. Benoist, D. Gonbeau, G. Pfister-Guillouzo, G. Ouvrard, A. Levasseur: J. Electron Spectrosc. Relat. Phenom. 83, 45 (1997)

    Article  Google Scholar 

  29. W. Jaegermann, F.S. Ohuchi, B.A. Parkinson: Surf. Sci. 201, 211 (1988)

    Article  ADS  Google Scholar 

  30. C.D. Wagner: Discuss. Faraday Soc. 60, 291 (1975)

    Article  Google Scholar 

  31. W. Lin, B.C. Wiegand, R.G. Nuzzo, G.S. Girolami: J. Am. Chem. Soc. 118, 5977 (1996)

    Article  Google Scholar 

  32. J. Dembowski, L. Marosi, M. Essig: Surf. Sci. Spectra 2, 104 (1994)

    Article  ADS  Google Scholar 

  33. J.S. Herman, F.L. Terry Jr.: J. Vac. Sci. Technol. A 11, 1094 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Senkevich.

Additional information

PACS

81.05.Lg; 68.43.-h; 82.80.Pv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkevich, J., Yang, G., Tang, F. et al. Substrate-independent sulfur-activated dielectric and barrier-layer surfaces to promote the chemisorption of highly polarizable metallorganics. Appl Phys A 79, 1789–1796 (2004). https://doi.org/10.1007/s00339-003-2080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2080-1

Keywords

Navigation