Skip to main content
Log in

Dual-facing-target-sputtered amorphous CoMoN/CN compound soft-X-ray multilayers: structures and thermal stability

  • Regular Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amorphous CoMoN/CN compound soft-X-ray multilayers were fabricated by dual-facing-target sputtering. Their structural thermal stability has been investigated by monitoring the structural evolutions of CN and CoMoN sublayers at annealing temperatures up to 800 °C using complementary measurement techniques, and measuring the coefficient of interfacial diffusion at annealing temperatures below 300 °C. The period expansion at annealing temperatures below 600 °C, which is usually observed in annealed metal/carbon soft-X-ray multilayers, is only 5%. The enhanced sp2 to sp3 bond ratio caused by the “incorporation annealing effect” of nitrogen [1] is thought to be responsible for the improved thermal stability of CN sublayers. Mo addition greatly suppresses the structural thermal evolution of CoMoN sublayers. XPS and TEM analyses indicate that the strong chemical bonding between N and Co atoms and Mo nitride aggregation in the grain boundary of cobalt are the main mechanisms for the high thermal stability of CoMoN sublayers. The layered structure of the CoMoN/CN multilayers still exists at the annealing temperature of 800 °C, while Co/C and CoN/CN multilayers have already been destroyed at this temperature. Compared with Co/C and CoN/CN multilayers, the smaller negative interdiffusivity measured by X-ray diffraction reveals the stable interfaces of CoMoN/CN multilayers. These results illustrate that refractory metal incorporation and strong chemical bond establishment are quite effective in obtaining thermally highly stable compound soft-X-ray optical multilayers .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Bai, E.Y. Jiang, P. Wu, Z.D. Lou, Y. Wang, C.D. Wang: Appl. Phys. A 69, 641 (1999)

    Article  ADS  Google Scholar 

  2. E. Spiller, L. Golub: Appl. Opt. 28, 2969 (1989)

    Article  ADS  Google Scholar 

  3. H.L. Bai, E.Y. Jiang, C.D. Wang, R.Y. Tian: J. Phys. Cond. Mat. 9, L205 (1997)

  4. J.M. Freitag, B.M. Clements: J. Appl. Phys. 89, 1101 (2001)

    Article  ADS  Google Scholar 

  5. J.H. Underwood, T.W. Barbee Jr.: Nature 294, 429 (1981)

  6. M. Arbaoui, R. Barchewitz, C. Sella, K.B. Youn: Appl. Opt. 29, 477 (1990)

    Article  ADS  Google Scholar 

  7. T.D. Naguyen, R. Gronscky, J.B. Kortright: Mater. Res. Soc. Symp. Proc. 187, 95 (1990)

    Article  Google Scholar 

  8. D.G. Stearns, R.S. Rosen, S.P. Vernon: Opt. Lett. 16, 1283 (1990)

    Article  ADS  Google Scholar 

  9. D.G. Stearns, R.S. Rosen, S.P. Vernon: J. Vac. Sci. Technol. A 9, 2662 (1991)

    Article  ADS  Google Scholar 

  10. H.J. Stock, U. Kleineberg, B. Heidemann, K. Hilgers, A. Kloidt, B. Schmiedeskamp, U. Heinzmann, M. Krumrey, P. Müller, F. Scholze: Appl. Phys. A 58, 371 (1994)

    Article  ADS  Google Scholar 

  11. T. Feigl, S. Yulin, N. Kaiser, R. Thielsch: Proc. SPIE 3997, 420 (2000)

  12. N. Kaiser, S. Yunlin, T. Feigl: Proc. SPIE 4146, 91 (2000)

    Article  ADS  Google Scholar 

  13. J.M. Freitag, B.M. Clements: J. Appl. Phys. 89, 1101 (2001)

    Article  ADS  Google Scholar 

  14. M.F. Ravet, F. Bridou, A. Raynal, B. Pardo, J.P. Chauvineau, J. M André: J. Appl. Phys. 89, 1145 (2001)

    Article  ADS  Google Scholar 

  15. S. Vitta, P. Yang: Appl. Phys. Lett. 77, 3654 (2000)

    Article  ADS  Google Scholar 

  16. B. Heidemann, T. Tappe, B. Schmiedeskamp, U. Heinzmann: Z. Phys. B 99, 37 (1995)

    Article  ADS  Google Scholar 

  17. U. Kleineberg, H.J. Stock, A. Kloidt, B. Schmiedeskamp, U. Heinzmann, S. Hopfe, R. Scholz: Phys. Stat. Sol. (a) 145, 539 (1994)

    Article  ADS  Google Scholar 

  18. R. Senderak, M. Jergel, S. Luby, E. Majkova, V. Holy, G. Haindl, F. Hamelmann, U. Kleineberg, U. Heinzmann: J. Appl. Phys. 81, 2229 (1997)

    Article  ADS  Google Scholar 

  19. K. Holloway, K.B. Do, R. Sinclair: J. Appl. Phys. 65, 474 (1989)

    Article  ADS  Google Scholar 

  20. X. Jiang, D. Xian, Z. Wu: Appl. Phys. Lett. 57, 2549 (1990)

    Article  ADS  Google Scholar 

  21. Z. Jiang, B. Vidal, G. Desrousseaux, V. Dupuis, M. Piecuch, M.F. Ranet: J. Appl. Phys. 74, 249 (1993)

    Article  ADS  Google Scholar 

  22. Z. Jiang, V. Dupuis, B. Vidal, M.F. Ravet, M. Piecuch: J. Appl. Phys. 72, 931 (1992)

    Article  ADS  Google Scholar 

  23. H.L. Bai, E.Y. Jiang, C.D. Wang, R.Y. Tian: J. Appl. Phys. 82, 2270 (1997)

    Article  ADS  Google Scholar 

  24. E. Ziegler, Y. Lepetre, I.K. Schuller, E. Spiller: Appl. Phys. Lett. 48, 1354 (1986)

    Article  ADS  Google Scholar 

  25. Y. Lepetre, E. Ziegler, I.K. Schuller, R. Rivoira: J. Appl. Phys. 64, 2301 (1986)

    Article  ADS  Google Scholar 

  26. Y. Takagi, D.A. Pawlik, A.M. Kadin, S.A. Flessa, K.L. Hart, J.E. Keem, J.E. Tyler: Mater. Res. Soc. Proc. 56, 441 (1986)

    Article  Google Scholar 

  27. E. D’Anna, A. Luches, M. Martino, M. Brunel, E. Majkova, S. Luby, R. Senderk, M. Jergel, F. Hamelmann, U. Kleineberg, U. Heinzmann: Appl. Surf. Sci. 106, 166 (1996)

  28. S. Luby, M. Jergel, A. Anopchenko, A. Aschentrup, F. Hamelmann, E. Majkova, U. Kleineberg, U. Heinamann: Appl. Surf. Sci. 150, 178 (1996)

    Article  ADS  Google Scholar 

  29. H. Takenaka, T. Kawamura: J. Elec. Spec. Rel. Phenom. 80, 381 (1996)

    Article  Google Scholar 

  30. H.L. Bai, E.Y. Jiang, C.D. Wang, R.Y. Tian: Appl. Phys. A 66, 423 (1998)

    Article  ADS  Google Scholar 

  31. H.E. Cook, J.E. Hilliard: J. Appl. Phys. 40, 2191 (1969)

    Article  ADS  Google Scholar 

  32. T.W. Cahn: Acta Metall. 9, 795 (1961)

  33. A.L. Greer, F. Spaepen: In: Synthetic Modulation Structures, ed. by L.L. Chang, B.C. Giessen (Academic Press, New York 1985) p. 424

  34. H.L. Bai, E.Y. Jiang, C.D. Wang: Thin Solid Films 286, 176 (1996)

  35. H.L. Bai, E.Y. Jiang, C.D. Wang: Thin Solid Films 304, 278 (1997)

  36. M. Setoyama, M. Irie, H. Ohara, M. Tsujioka, T. Nomura, N. Kitagawa: Thin Solid Films 341, 126 (1999)

    Article  ADS  Google Scholar 

  37. H.L. Bai, E.Y. Jiang, C.D. Wang: J. Appl. Phys. 80, 1428 (1996)

    Article  ADS  Google Scholar 

  38. H.L. Bai, E.Y. Jiang: Thin Solid Films 353, 157 (1999)

  39. H.L. Bai, E.Y. Jiang: J. Phys. Cond. Mat. 10, 3433 (1998)

    Article  ADS  Google Scholar 

  40. A.K. Niessen, A.R. Miedema, B. Bunsenges: Phys. Chem. 87, 717 (1983)

    Google Scholar 

  41. J.M. Lépez, J.A. Alonso: Phys. Status Solidi (a) 85, 423 (1984)

    Article  ADS  Google Scholar 

  42. A.R. Miedema, P.F. de Châtel, F.R. de Boer: Physica B 100, 1 (1980)

    Google Scholar 

  43. A.K. Niessen, A.R. Miedema, F.R. de Boer, R. Boom: Physica B 151, 401 (1988)

    ADS  Google Scholar 

  44. P.M.A. Sherwood: In: Practical Surface Analysis, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1983) p. 445

  45. J.A. Rodriguez, D.W. Goodman: Nature 257, 897 (1992)

  46. J.A. Rodriguez, R.A. Campbell, D.W. Goodman: J. Phys. Chem. 95, 5716 (1991)

    Article  Google Scholar 

  47. J.A. Rodriguez, R.A. Campbell, D.W. Goodman: Surf. Sci. 303309, 377 (1994)

    Article  ADS  Google Scholar 

  48. D.R. Rainer, J.S. Corneille, D.W. Goodman: J. Vac. Sci. Technol. A 13, 1595 (1995)

    Article  ADS  Google Scholar 

  49. M. Tikhov, E. Bauer: Surf. Sci. 232, 73 (1990)

    Article  ADS  Google Scholar 

  50. R.A. Campbell, J.A. Rodriguez, D.W. Goodman: Surf. Sci. 256, 272 (1991)

    Article  ADS  Google Scholar 

  51. J.W. He, W.L. Shea, X. Jiang, D.W. Goodman: J. Vac. Sci. Technol. A 8, 2435 (1990)

    Article  ADS  Google Scholar 

  52. B. Johansson, N. Martensson: Phys. Rev. B 21, 4427 (1980)

    Article  ADS  Google Scholar 

  53. P. Steiner, S. Hufner, N. Martensson, B Johansson: Solid State Commun. 37, 73 (1981)

    Article  ADS  Google Scholar 

  54. P.H. Berning: Phys. Thin Films 1, 69 (1963)

  55. H.J. Underwood, T.W. Barbee Jr.: Appl. Opt. 20, 3027 (1981)

  56. P.F. Miceli, D.A. Neumann, H. Zabel: Appl. Phys. Lett. 48, 24 (1986)

    Article  ADS  Google Scholar 

  57. B.L. Henke, J.Y. Uejio, H.T. Yamada, R.E. Tackaberry: Opt. Eng. 25, 937 (1986)

    Article  ADS  Google Scholar 

  58. B.L. Henke, P. Lee, T.J. Tanaka, R.T. Shimabukuro, B.K. Fujikawa: Atomic and Nuclear Data Table 27 (Academic, New York 1982)

  59. H.L. Bai, E.Y. Jiang, C.D. Wang, R.Y. Tian: J. Phys. Cond. Mat. 8, 8763 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.L. Bai.

Additional information

PACS

68.65+g; 68.55.Ln; 68.35.Fx; 68.60.Dv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., He, Z., Mi, W. et al. Dual-facing-target-sputtered amorphous CoMoN/CN compound soft-X-ray multilayers: structures and thermal stability. Appl Phys A 77, 533–541 (2003). https://doi.org/10.1007/s00339-002-1488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-002-1488-3

Keywords

Navigation