Skip to main content
Log in

On the Stability of Multilayer ZrN/SiNx and CrN/SiNx Coatings Formed by Magnetron Sputtering to High-Temperature Oxidation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Multilayer ZrN/SiNx and CrN/SiNx coatings are formed using the method of magnetron sputtering by the consecutive sputtering of Zr (Cr) and Si3N4 targets upon a variation in the thickness of an individual layer from 2 to 10 nm at a substrate temperature of 300°C (ZrN/SiNx system) and 450°C (CrN/SiNx system). X-ray diffraction analysis demonstrates that multilayer ZrN/SiNx and CrN/SiNx coatings consist of nanocrystalline ZrN (CrN) layers with the preferred orientation (002) and amorphous SiNx layers. The lattice parameters of the metal nitride phase for the ZrN/SiNx and CrN/SiNx films are greater than for monolytic ZrN and CrN layers, respectively, and, in the case of ZrN/SiNx films, the lattice parameter increases upon a reduction of the ratio of ZrN to SiNx elementary-layer thicknesses, which can be associated with the growth of compressive stress. As wavelength dispersive X-ray spectrometry of the film composition and scanning electron microscopy of the surface show, the multilayer ZrN/SiNx and CrN/SiNx coatings are more resistant to high-temperature oxidation (in the temperature range of 400–950°C) in comparison with the ZrN and CrN coatings. This resistance increases upon a decrease in the ratio of the thickness of the ZrN individual layer to that of the SiNx individual layer as well as upon an increase in the quantity of layers in the film. However, these factors are not so deciding in the case of CrN/SiNx system. In general, CrN/SiNx coatings are more stable than ZrN/SiNx coatings under the conditions of high-temperature oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Abadias, L. E. Koutsokeras, A. Siozios, and P. Patsalas, Thin Solid Films 538, 56 (2013). https://doi.org/10.1016/j.tsf.2012.10.119

    Article  CAS  Google Scholar 

  2. H. C. Barshilia, B. Deepthi, A. S. Arun Prabhu, and K. S. Rajam, Surf. Coat. Technol. 201, 329 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.124

    Article  CAS  Google Scholar 

  3. S. G. Harris, E. D. Doyle, A. C. Vlasveld, et al., Wear 254, 723 (2003). https://doi.org/10.1016/S0043-1648(03)00258-8

    Article  CAS  Google Scholar 

  4. L. Chen, L. He, Y. Xu, et al., Surf. Coat. Technol. 244, 87 (2014). https://doi.org/10.1016/j.surfcoat.2014.01.063

    Article  CAS  Google Scholar 

  5. C. M. Koller, R. Hollerweger, C. Sabitzer, et al., Surf. Coat. Technol. 259, 599 (2014). https://doi.org/10.1016/j.surfcoat.2014.10.024

    Article  CAS  Google Scholar 

  6. M. Pfeiler, G. A. Fontalvo, J. Wagner, et al., Tribol. Lett. 30, 91 (2008). https://doi.org/10.1007/s11249-008-9313-6

    Article  CAS  Google Scholar 

  7. M. Stueber, U. Albers, H. Leiste, et al., Surf. Coat. Technol. 200, 6162 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.012

    Article  CAS  Google Scholar 

  8. R. Wei, C. Rincon, and E. Langa, J. Vac. Sci. Technol., A 28 (5), 1126 (2010). https://doi.org/10.1116/1.3463709

    Article  CAS  Google Scholar 

  9. H. C. Barshilia, B. Deepthi, and K. S. Rajam, Surf. Coat. Technol. 201, 9468 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.002

    Article  CAS  Google Scholar 

  10. Y. H. Cheng, T. Browne, B. Heckerman, and E. I. Meletis, Surf. Coat. Technol. 204, 2123 (2010). https://doi.org/10.1016/j.surfcoat.2009.11.034

    Article  CAS  Google Scholar 

  11. Y.-I. Chen, Y.-X. Gao, and L.-C. Chang, Surf. Coat. Technol. 332, 72 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.087

    Article  CAS  Google Scholar 

  12. K. Yalamanchili, I. C. Schramm, E. Jiménez-Piqué, et al., Acta Mater. 89, 22 (2015). https://doi.org/10.1016/j.actamat.2015.01.066

    Article  CAS  Google Scholar 

  13. T. Weirather, K. Chladil, B. Sartory, et al., Surf. Coat. Technol. 257, 48 (2014). https://doi.org/10.1016/j.surfcoat.2014.06.018

    Article  CAS  Google Scholar 

  14. X. Bai, W. Zheng, T. An, and Q. Jiang, J. Phys.: Condens. Matter 17, 6405 (2005). https://doi.org/10.1088/0953-8984/17/41/011

    Article  CAS  Google Scholar 

  15. I. A. Saladukhin, G. Abadias, V. V. Uglov, et al., Surf. Coat. Technol. 332, 428 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.076

    Article  CAS  Google Scholar 

  16. K. Bobzin, T. Brögelmann, N. C. Kruppe, et al., Surf. Coat. Technol. 332, 253 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.092

    Article  CAS  Google Scholar 

  17. E. Contreras, Y. Galindez, and M. A. Rodas, Surf. Coat. Technol. 332, 214 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.086

    Article  CAS  Google Scholar 

  18. Y.-Y. Chang, S.-Y. Weng, C.-H. Chen, and F.-X. Fu, Surf. Coat. Technol. 332, 494 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.080

    Article  CAS  Google Scholar 

  19. D. Peruško, M. J. Webb, V. Milinović, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1749 (2008). https://doi.org/10.1016/j.nimb.2008.02.034

    Article  CAS  Google Scholar 

  20. I. Kim, L. Jiao, F. Khatkhatay, et al., J. Nucl. Mater. 441, 47 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.035

    Article  CAS  Google Scholar 

  21. T. P. Soares, C. Aguzzoli, G. V. Soares, et al., Surf. Coat. Technol. 237, 170 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.061

    Article  CAS  Google Scholar 

  22. G. Abadias, V. V. Uglov, I. A. Saladukhin, et al., Surf. Coat. Technol. 308, 158 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.099

    Article  CAS  Google Scholar 

  23. J. J. Colin, Y. Diot, P. Guerin, et al., Rev. Sci. Instrum. 87, 023902 (2016). https://doi.org/10.1063/1.4940933

    Article  CAS  Google Scholar 

  24. G. Abadias, L. E. Koutsokeras, S. N. Dub, et al., J. Vac. Sci. Technol., A 28, 541 (2010). https://doi.org/10.1116/1.3426296

    Article  CAS  Google Scholar 

  25. L. Simonot, D. Babonneau, S. Camelio, et al., Thin Solid Films 518, 2637 (2010). https://doi.org/10.1016/j.tsf.2009.08.005

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Belarusian Republic Foundation for Basic Research (project no. F18MC-027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Saladukhin, G. Abadias or V. V. Uglov.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saladukhin, I.A., Abadias, G., Uglov, V.V. et al. On the Stability of Multilayer ZrN/SiNx and CrN/SiNx Coatings Formed by Magnetron Sputtering to High-Temperature Oxidation. J. Surf. Investig. 14, 351–358 (2020). https://doi.org/10.1134/S1027451020020512

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020512

Keywords:

Navigation