Skip to main content

Advertisement

Log in

High abundances of zooxanthellate zoantharians (Palythoa and Zoanthus) at multiple natural analogues: potential model anthozoans?

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Whilst natural analogues for future ocean conditions such as CO2 seeps and enclosed lagoons in coral reef regions have received much recent research attention, most efforts in such locations have focused on the effects of prolonged high CO2 levels on scleractinian corals and fishes. Here, we demonstrate that the three species of zooxanthellate zoantharians, hexacorallian non-calcifying “cousins” of scleractinians, are common across five coral reef natural analogue sites with high CO2 levels in the western Pacific Ocean, in Japan (n = 2), Palau, Papua New Guinea, and New Caledonia (n = 1 each). These current observations support previously reported cases of high Palythoa and Zoanthus abundance and dominance on various impacted coral reefs worldwide. The results demonstrate the need for more research on the ecological roles of zooxanthellate zoantharians in coral reef systems, as well as examining other “understudied” taxa that may become increasingly important in the near future under climate change scenarios. Given their abundance in these sites combined with ease in sampling and non-CITES status, some zoantharian species should make excellent hexacoral models for examining potential resilience or resistance mechanisms of anthozoans to future high pCO2 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agostini S, Wada S, Kon K, Omori A, Kohtsuka H, Fujimura H, Tsuchiya Y, Sato T, Shinagawa H, Yamada Y, Inaba K (2015) Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and their potential for ocean acidification research. Regional Studies in Marine Science 2:45–53

    Article  Google Scholar 

  • Agostini S, Harvey BP, Wada S, Kon K, Milazzo M, Inaba K, Hall-Spencer JM (2018) Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Sci Rep 8:11354. https://doi.org/10.1038/s41598-018-29251-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agostini S, Harvey BP, Milazzo M, Wada S, Kon K, Floch N, Komatsu K, Kuroyama M, Hall-Spencer JM (2021) Simplification not tropicalization, of temperate marine ecosystems under ocean warming and acidification. Global Change Biol 27:4771–4784. https://doi.org/10.1111/gcb.15749

    Article  CAS  Google Scholar 

  • Biscéré T, Zampighi M, Lorrain A, Jurriaans S, Foggo A, Houlbrèque F, Rodolfo-Metalpa R (2019) High pCO2 promotes coral primary production. Biol Let 15:20180777

    Article  Google Scholar 

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  • Carlgren O (1900) Ostafrikanische Actinien, gesammelt von Herrn Dr. F. Stuhlmann 1898 und 1899. Mitteilungen aus dem Naturhistorischen Museum in Hamburg, 17 (Supplement 2):21–144, pls. 1–7

  • Cattano C, Agostini S, Harvey BP, Wada S, Quattrocchi F, Turco G, Inaba K, Hall-Spencer JM, Milazzo M (2020) Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. Sci Total Environ 725:138501

    Article  CAS  PubMed  Google Scholar 

  • Comeau S, Cornwall CE, Shlesinger T, Hoogenboom M, Mana R, McCulloch MT, Rodolfo-Metalpa R (2022) pH variability at volcanic CO2 seeps regulates coral calcifying fluid chemistry. Glob Change Biol 28:2751–2763

    Article  Google Scholar 

  • Cowman PF, Quattrini AM, Bridge TC, Watkins-Colwell GJ, Fadli N, Grinblat M, Roberts TE, McFadden CS, Miller DJ, Baird AH (2020) An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol Phylogenet Evol 153:106944

    Article  PubMed  Google Scholar 

  • Cruz IC, Meira VH, de Kikuchi RK, Creed JC (2016) The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs. Mar Environ Res 115:28–35

    Article  CAS  PubMed  Google Scholar 

  • Deeds JR, Handy SM, White KD, Reimer JD (2011) Palytoxin found in Palythoa sp zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PLoS ONE 6:e18235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pulido G, Gouzezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudoit A, Santos ME, Reimer JD, Toonen RJ (2022) Phylogenomics of Palythoa (Hexacorallia: Zoantharia): probing species boundaries in a globally distributed genus. Coral Reefs 41:655–672

    Article  Google Scholar 

  • Esper EJC (1805) Die Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet nebst Beschreibungen. Dritter Theil. Dreyzehende Lieferung. Raspe, Nürnberg, pp. 3–24, 2 pls.

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Fabricius KE, De’ath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc Royal Soc B 281:20132479. https://doi.org/10.1098/rspb.2013.2479

    Article  CAS  Google Scholar 

  • Foo SA, Byrne M, Ricevuto E, Gambi MC (2018) The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanogr Mar Biol 3:237–310

    Google Scholar 

  • Fujiwara Y, Kawamura I, Reimer JD, Parkinson JE (2021) Zoantharian endosymbiont community dynamics during a stress event. Front Microbiol 12:674026

    Article  PubMed  PubMed Central  Google Scholar 

  • Golbuu Y, Gouezo M, Kurihara H, Rehm L, Wolanski E (2016) Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35:909–918

    Article  Google Scholar 

  • Haddon AC, Shackleton AM (1891b) Actiniae: I. Zoantheae. In: Reports on the zoological collections made in the Torres Straits by Professor A.C. Haddon, 1888–1889. Scientific Transactions of the Royal Dublin Society (2) 4 (13): 673–701, pls. 61–64.

  • Hall-Spencer JM, Belfiore G, Tomatsuri M, Porzio L, Harvey BP, Agostini S, Kon K (2022) Decreased diversity and abundance of marine invertebrates at CO2 seeps in warm-temperate Japan. Zoolog Sci 39:41–51. https://doi.org/10.2108/zs210061

    Article  PubMed  Google Scholar 

  • Harvey BP, Allen R, Agostini S, Hoffmann LJ, Kon K, Summerfield TC, Wada S, Hall-Spencer JM (2021) Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site. Communications Biology 4:219. https://doi.org/10.1038/s42003-021-01712-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haywick DW, Mueller EM (1997) Sediment retention in encrusting Palythoa spp.—a biological twist to a geological process. Coral Reefs 16:39–46

    Article  Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683–687

    Article  CAS  Google Scholar 

  • Irei Y, Nozawa Y, Reimer JD (2011) Distribution patterns of five zoanthid species in Okinawa Island, Japan. Zoological Studies 50:426–433

    Google Scholar 

  • Kamezaki M, Higa M, Hirose M, Suda S, Reimer JD (2013) Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Mar Biodivers 43:61–70

    Article  Google Scholar 

  • Kang J, Nagelkerken I, Rummer JL, Rodolfo-Metalpa R, Munday PL, Ravasi T, Schunter C (2022) Rapid evolution fuels transcriptional plasticity to ocean acidification. Glob Change Biol 28:3007–3022

    Article  CAS  Google Scholar 

  • Karlson RH (1980) Alternative competitive strategies in a periodically disturbed habitat. Bull Mar Sci 30:894–900

    Google Scholar 

  • Kurihara H, Watanabe A, Tsugi A, Mimura I, Hongo C, Kawai T, Reimer JD, Kimoto K, Gouezo M, Golbuu Y (2021) Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau. Sci Rep 11:1–10

    Google Scholar 

  • Lachs L, Johari NA, Le DQ, Safuan CD, Duprey NN, Tanaka K, Hong TC, Ory NC, Bachok Z, Baker DM, Kochzius M (2019) Effects of tourism-derived sewage on coral reefs: isotopic assessments identify effective bioindicators. Mar Pollut Bull 148:85–96

    Article  CAS  PubMed  Google Scholar 

  • Low ME, Sinniger F, Reimer JD (2016) The order Zoantharia Rafinesque, 1815 (Cnidaria, Anthozoa: Hexacorallia): supraspecific classification and nomenclature. ZooKeys 641:1–80

    Article  Google Scholar 

  • Maggioni F, Pujo-Pay M, Aucan J, Cerrano C, Calcinai B, Payri C, Benzoni F, Letourneur Y, Rodolfo-Metalpa R (2021) The Bouraké semi-enclosed lagoon (New Caledonia)–a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions. Biogeosciences 18:5117–5140

    Article  CAS  Google Scholar 

  • Mizuyama M, Iguchi A, Iijima M, Gibu K, Reimer JD (2020) Comparison of Symbiodiniaceae diversities in different members of a Palythoa species complex (Cnidaria: Anthozoa: Zoantharia)—implications for ecological adaptations to different microhabitats. PeerJ 8:e8449

    Article  PubMed  PubMed Central  Google Scholar 

  • Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Chang 4:487–492

    Article  CAS  Google Scholar 

  • Noda H, Parkinson JE, Yang SY, Reimer JD (2017) A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island. Japan Peerj 5:e3740

    Article  PubMed  Google Scholar 

  • Ong CW, Reimer JD, Todd PA (2013) Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa. Mar Biol 160:1053–1064

    Article  Google Scholar 

  • Pax F, Müller I (1957) Zoantharien aus Viet-Nam. Mémoires du Museum national d’Histoire naturelle (A) 16 (1): 1–40

  • Pichler T, Veizer J, Hall GE (1999) The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem 64:229–252

    Article  CAS  Google Scholar 

  • Pichler T, Biscéré T, Kinch J, Zampighi M, Houlbrèque F, Rodolfo-Metalpa R (2019) Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO2 on coral reefs. Mar Pollut Bull 138:148–158

    Article  CAS  PubMed  Google Scholar 

  • Plaisance L, Matterson K, Fabricius K, Drovetski S, Meyer C, Knowlton N (2021) Effects of low pH on the coral reef cryptic invertebrate communities near CO2 vents in Papua New Guinea. PLoS ONE 16:e0258725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prada F, Brizi L, Franzellitti S, Mengoli S, Fermani S, Polishchuk I, Baraldi N, Ricci F, Palazzo Q, Caroselli E, Pokroy B (2021) Coral micro-and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci Rep 11:1–10

    Article  Google Scholar 

  • Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan GA, Hellberg ME, Kitahara MV, Morrison CL, Paz-García DA, McFadden RJD, CS, (2020) Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nature Ecology & Evolution 4:1531–1538

    Article  Google Scholar 

  • Reimer JD (2010) Key to field identification of shallow water brachycnemic zoanthids (Order Zoantharia: Suborder Brachycnemina) present in Okinawa. Galaxea, J Coral Reef Studies 12:23–29

    Article  Google Scholar 

  • Reimer JD (2021) New records of zooxanthellate zoantharians (Brachycnemina: Zoantharia: Anthozoa: Cnidaria) from Iwotorishima Island in the Ryukyu Islands. Fauna Ryukyuana 59:35–39

    Google Scholar 

  • Reimer JD, Takishita K, Maruyama T (2006) Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reefs 25:521–527

    Article  Google Scholar 

  • Reimer JD, Albinsky D, Yang SY, Lorion J (2014) Zoanthid (Cnidaria: Anthozoa: Hexacorallia: Zoantharia) species of coral reefs in Palau. Mar Biodivers 44:37–44

    Article  Google Scholar 

  • Reimer JD, Herrera M, Gatins R, Roberts MB, Parkinson JE, Berumen ML (2017) Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. J Biogeogr 44:661–673

    Article  Google Scholar 

  • Reimer JD, Kurihara H, Ravasi T, Ide Y, Izumiyama M, Kayanne H (2021a) Unexpected high abundance of aragonite-forming Nanipora (Octocorallia: Helioporacea) at an acidified volcanic reef in southern Japan. Mar Biodivers 51:1–5

    Article  Google Scholar 

  • Reimer JD, Wee HB, López C, Beger M, Cruz IC (2021b) Widespread Zoanthus and Palythoa dominance, barrens, and phase shifts in shallow water subtropical and tropical marine ecosystems. Annu Rev Oceanogr Mar Biol 2021:533–557

    Google Scholar 

  • Santos ME, Baker DM, Conti-Jerpe IE, Reimer JD (2021) Populations of a widespread hexacoral have trophic plasticity and flexible syntrophic interactions across the Indo-Pacific Ocean. Coral Reefs 40:543–558

    Article  Google Scholar 

  • Schmidt EF, Sluka RD, Sullivan-Sealey KM (2002) Evaluating the use of roving diver and transect surveys to assess the coral reef fish assemblage off southeastern Hispaniola. Coral Reefs 21:216–223

    Article  Google Scholar 

  • Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zoolog Sci 25:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Sinniger F (2007) Zoantharia of New Caledonia. et Techniques 2007:129

  • Swain TD (2018) Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference. Mol Phylogenet Evol 118:1–12

    Article  PubMed  Google Scholar 

  • Wee HB, Kurihara H, Reimer JD (2019) Reduced Symbiodiniaceae diversity in Palythoa tuberculosa at a heavily acidified coral reef. Coral Reefs 38:311–319

    Article  Google Scholar 

  • Wee HB, Kobayashi Y, Reimer JD (2021) Effects of temperature, salinity, and depth on Symbiodiniaceae lineages hosted by Palythoa tuberculosa near a river mouth. Mar Ecol Prog Ser 667:43–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project contributes towards the International CO2 Natural Analogues (ICONA) Network. JDR, BPH, SA, SW, EK, and TR were partially funded by the Japan Society for the Promotion of Science (JSPS) Core-to-Core Program (Grant Number: JPJSCCA20210006). Sampling in Bouraké was granted by ICONA. At Bouraké, we are indebted to M. Dumas and J. Giraud for their help during fieldwork operations, and to Greg and Esmeralda Peccard for their amazing support. Sampling at Ambitle CO2 seep in PNG was financed by the French National Research Agency (ANR; project CARIOCA grant agreement no. ANR15CE02-0006-01, 2015), by the French grant scheme Fonds Pacifique (project AMBITLE grant agreement no. 1598, 2016), and by the Flotte Océanographique Française for using the research vessel Alis. For Shikinejima, we thank the technical staff at Shimoda Marine Research Center and aboard RV Tsukuba II, University of Tsukuba, for their assistance and the fisheries agencies of Nijima/Shikine Island (Tokyo Prefecture) for their support. JDR’s work in Palau was supported by the JST/JICA P-CoRIE project. The staffs of Palau International Coral Reef Center (PICRC) are thanked for logistic support. Work at Iwotorishima was supported by an OIST KICKS grant entitled “Japanese volcanic CO2 vents—natural laboratories to study the behaviour and adaptation of marine organisms to acidifying oceans” to TR, HK, and JDR. We thank the captain and crew of the Yosemiya III, and cruise member Y. Ide (Oceanic Planning Corp.) for their support and advice at Iwotorishima. H. Takamiyagi (OIST) provided support at Iwotorishima and in New Caledonia. Two anonymous reviewers provided helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Davis Reimer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimer, J.D., Agostini, S., Golbuu, Y. et al. High abundances of zooxanthellate zoantharians (Palythoa and Zoanthus) at multiple natural analogues: potential model anthozoans?. Coral Reefs 42, 707–715 (2023). https://doi.org/10.1007/s00338-023-02381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-023-02381-9

Keywords

Navigation