Skip to main content

Advertisement

Log in

A quick and cost-effective method for modelling water renewal in shallow coral reef lagoons

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Water renewal exerts a preponderant role in eutrophication, yet few hydrodynamic indicators exist for performing quick and cost-effective assessments of ecosystem vulnerability. Using field data, we closed the water budget of a shallow coral reef lagoon recently exposed to high levels of nutrient loading that triggered green tides. Then, we tested the relevance of modelling flushing-time, a proxy of water renewal, from oceanic and atmospheric open access data. Water inflows in the lagoon were mainly driven by waves breaking on exposed reefs, but tide and wind also influenced water renewal during low-wave periods. Modelling flushing-time as a function of the wave features (significant wave height, direction, and period), tide, and wind direction provided the most convincing model, with greater contribution of wave height, and adequately reproduced observations for an independent dataset. Using this model to hindcast flushing-time over the period 2000–2019 highlighted that green tides that recently struck the area in January 2018 and June 2019 followed periods of slow water renewal, which therefore contributed to amplify the blooms. The analysis also demonstrated that renewal events even slower than those recorded in 2018–2019 are frequent in this lagoon, which highlights the high vulnerability of this UNESCO World Heritage Site to other pulses of nutrient loading. Since the methodology developed in this study can be easily applied to many other coastal barrier and fringing reefs, it offers a promising perspective for quick and cost-effective assessments of coral reef vulnerability to eutrophication and other ecosystem crises magnified by slow water renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amrari S, Bourassin E, Andréfouët S, Soulard B, Lemonnier H, Le Gendre R (2021) Shallow water bathymetry retrieval using a band-optimization iterative approach: application to New Caledonia coral reef lagoons using sentinel-2 data. Remote Sens 13(20):4108. https://doi.org/10.3390/rs13204108

    Article  Google Scholar 

  • Andréfouët S, Pagès J, Tartinville B (2001) Water renewal time for classification of atoll lagoons in the Tuamotu Archipelago (French polynesia). Coral Reefs 20:399–408

    Article  Google Scholar 

  • Andréfouët S, Ouillon S, Brinkman R et al (2006a) Review of solutions for 3D hydrodynamic modelling applied to aquaculture in South Pacific atoll lagoons. Mar Pollut Bull 52(10):1138–1155

    Article  Google Scholar 

  • Andréfouët S, Cabioch G, Flamand B, Pelletier B (2009) A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: a synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28:691–707

    Article  Google Scholar 

  • Andréfouët S, Dutheil C, Menkes C, Bador M, Lengaigne M (2014) Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. Glob Change Biol 21(1):195–205. https://doi.org/10.1111/gcb.12699

    Article  Google Scholar 

  • Andréfouët S, Genthon P, Pelletier B, Le Gendre R, Friot C, Smith R, Liao V (2020) The lagoon geomorphology of pearl farming atolls in the Central Pacific Ocean revisited using detailed bathymetry data. Mar Pollut Bull 160:111580

    Article  Google Scholar 

  • Andréfouët S, Desclaux T, Buttin J, Jullien S, Aucan J, Le Gendre R, Liao V (2022) Periodicity of wave-driven flows and lagoon water renewal for 74 central Pacific Ocean atolls. Mar Pollut Bull 179:113748

    Article  Google Scholar 

  • Andréfouët S, Muller-Karger FE, Robinson JA, Kranenburg CJ, Torres-Pulliza D, Spraggins SA, Murch B (2006b) Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In: Proceedings of the 10th international coral reef symposium 2: 1732–1745

  • Aucan J, Desclaux T, Le Gendre R, Liao V, Andréfouët S (2021) Tide and wave driven flow across the rim reef of the atoll of Raroia (Tuamotu, french polynesia). Mar Pollut Bull 171:112718

    Article  CAS  Google Scholar 

  • Beroya-Eitner MA (2016) Ecological vulnerability indicators. Ecol Ind 60:329–334

    Article  Google Scholar 

  • Brisset M, Van Wynsberge S, Andréfouët S, Payri C, Soulard B, Bourassin E, Le Gendre R, Coutures E (2021) Hindcast and near real-time monitoring of green macroalgae blooms in shallow coral reef lagoons using sentinel-2: a New-Caledonia case study. Remote Sens. https://doi.org/10.3390/rs13020211

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Practical use of the information-theoretic approach, 2nd edn. Springer, New York, USA, pp 75–117

    Google Scholar 

  • Callaghan DP, Nielsen P, Cartwright N, Gourlay MR, Baldock TE (2006) Atoll lagoon flushing forced by waves. Coast Eng 53:691–704

    Article  Google Scholar 

  • Chevalier C, Sous D, Devenon JC, Pagano M, Rougier G, Blanchot J (2015) Impact of cross-reef water fluxes on lagoon dynamics: a simple parameterization for coral lagoon circulation model, with application to the Ouano lagoon, New Caledonia. Ocean Dyn 65:1509–1534

    Article  Google Scholar 

  • Codiga DL (2011) Unified tidal analysis and prediction using the utide matlab functions. technical report 2011–01. Graduate School of Oceanography University of Rhode Island, Narragansett RI, p 59

    Google Scholar 

  • Deleersnijder E (2003) Comments on “water renewal time for classification of atoll lagoons in the tuamotu archipelago (French polynesia)” by Andréfouët et al [coral reefs (2001) 20:399–408]. Coral Reefs 22:307

    Article  Google Scholar 

  • Demerliac A (1974) Calcul du niveau moyen journalier de la mer. Rapp Du Serv Hydrogr De La Mar 741:49–57

    Google Scholar 

  • Douillet P (1998) Tidal dynamics of the south-west lagoon of New Caledonia: observations and 2D numerical modelling. Oceanol Acta 21(1):69–79

    Article  Google Scholar 

  • Dumas F, Le Gendre R, Thomas Y, Andréfouët S (2012) Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu archipelago, french polynesia) from in situ observations and numerical modelling. Mar Pollut Bull 65(10–12):425–440

    Article  CAS  Google Scholar 

  • Dutheil C, Andréfouët S, Jullien S, Le Gendre R, Aucan J, Menkes C (2020) Characterization of south central Pacific Ocean wind regimes in present and future climate for pearl farming application. Mar Pollut Bull 160:111584

    Article  CAS  Google Scholar 

  • Fabricius KE (2011) Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model. Coral Reefs Ecosyst Transit. https://doi.org/10.1007/978-94-007-0114-4_28

    Article  Google Scholar 

  • Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, da Silva MC, Garcés E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2011) Overview of eutrophication indicators to assess environmental status within the european marine strategy framework directive. Estuar Coast Shelf Sci 93(2):117–131

    Article  CAS  Google Scholar 

  • Gallagher BS, Shimada KM, Gonzales FI, Stroup ED (1971) Tides and currents in fanning atoll lagoon. Pac Sci 25:191–205

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Jouon A, Douillet P, Ouillon S, Fraunié P (2006) Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont Shelf Res 26(12–13):1395–1415

    Article  Google Scholar 

  • Lagourgue L, Gobin S, Brisset M, Vandenberghe S, Bonneville C, Jauffrais T, Van Wynsberge S, Payri C (2022) Ten new species of ulva (Ulvophyceae, Chlorophyta) discovered in new caledonia: genetic and morphological diversity, and bloom potential. Eur J Phycol. https://doi.org/10.1080/09670262.2022.2027023

    Article  Google Scholar 

  • Larsen K (2015) GAM: the predictive modelling silver bullet. Multithreaded Stitch Fix 30:1–27

    Google Scholar 

  • Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Etrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11

    Article  Google Scholar 

  • Lefèvre J, Marchesiello P, Jourdain NC, Menkes C, Leroy A (2010) Weather regimes and orographic circulation around New Caledonia. Mar Pollut Bull 61(7–12):413–431

    Article  Google Scholar 

  • Le-Gendre R, Soulard B, Lalau N, Bruyere O, Van Wynsberge S (2020) Field observations of hydrodynamics in a shallow coral reef lagoon: poe lagoon - New Caledonia. SEANOE. https://doi.org/10.17882/76334

  • Lindhart M, Rogers JS, Maticka SA, Woodson CB, Monismith SG (2021) Wave modulation of flows on open and closed reefs. J Geophys Res Ocean. https://doi.org/10.1029/2020JC016645

    Article  Google Scholar 

  • Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Ann Rev Mar Sci 7:43–66

    Article  Google Scholar 

  • Lucas LV, Deleersnijder E (2020) Timescale methods for simplifying, understanding and modeling biophysical and water quality processes in coastal aquatic ecosystems: a review. Water 12(10):2717

    Article  Google Scholar 

  • Massel SR, Gourlay MR (2000) On the modelling of wave breaking and set-up on coral reefs. Coast Eng 39(1):1–27

    Article  Google Scholar 

  • Ménesguen A (2018) Les marées vertes, 40 clés pour comprendre. Edition Quae, Versailles France, p 119

    Google Scholar 

  • Ménesguen A, Perrot T, Dussauze M (2010) Ulva mass accumulations on brittany beaches: explanation and remedies deduced from models. Mercator Ocean Q Newsl 38:4–13

    Google Scholar 

  • Monismith SG, Herdman LMM, Ahmerkamp S, Hench JL (2013) Wave transformation and water-driven flow across a steep coral reef. J Phys Oceanogr 43(7):1356–1379

    Article  Google Scholar 

  • Monsen N, Cloern JE, Lucas L, Monismith SG (2002) A comment on the use of flushing-time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553. https://doi.org/10.4319/lo.2002.47.5.1545

    Article  Google Scholar 

  • Page CE, Leggat W, Heron SF, Fordyce AJ, Ainsworth TD (2021) High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals’ endosymbiotic algae. Conserv Physiol. https://doi.org/10.1093/conphys/coab046

    Article  Google Scholar 

  • Payri CE, Allain V, Aucan J, David C, David V, Dutheil C, Loubersac L, Menkes C, Pelletier B, Pestana G, Samadi S (2019) New caledonia. World seas: an environmental evaluation chapter. Elsevier, Amsterdam, Netherlands, pp 593–618

    Chapter  Google Scholar 

  • Péquignet ACN, Becker JM, Merrifield MA (2014) Energy transfer between wind waves and low-frequency oscillations on a fringing reef, Ipan guam. JGR Ocean 119(10):6709–6724

    Article  Google Scholar 

  • Perrot T, Rossi N, Ménesguen A, Dumas F (2014) Modelling green macroalgae blooms on the coasts of brittany, france to enhance water quality management. J Mar Syst 132:38–53

    Article  Google Scholar 

  • Pinay G, Gascuel C, Ménesguen A, Souchon Y, Le Moal M, Levain A, Etrillard C, Moatar F, Pannard A, Souchu P (2014) L’eutrophisation: manifestations, causes, conséquences et prédictibilité, synthèse de l’expertise scientifique collective. CNRS Ifremer INRA, Irstea France, p 148

    Google Scholar 

  • Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Model 70:174–188

    Article  Google Scholar 

  • Schlager W, Purkis S (2014) Reticulated reef patterns – antecedent karst versus self-organization. Sedimentology 62:501–515

    Article  Google Scholar 

  • Schwichtenberg F, Callies U, van Beusekom JEE (2017) Residence times in shallow waters help explain regional differences in Wadden Sea eutrophication. Geo Mar Lett 37:171–177

    Article  Google Scholar 

  • Senent-Aparicio J, Lopez-Ballesteros A, Nielsen A, Trolle D (2021) A holistic approach for determining the hydrology of the mar menor coastal lagoon by combining hydrological & hydrodynamic models. J Hydrol 603:127150

    Article  Google Scholar 

  • Servén D, Brummitt C (2018) pyGAM: generalized additive models in python (v0.4.1). Zenodo. https://doi.org/10.5281/zenodo.1208724

  • Sous D, Chevalier C, Devenon JL, Blanchot J, Pagano M (2017) Circulation patterns in a channel reef-lagoon system, ouano lagoon, New Caledonia. Estuar Coast Shelf Sci 196:315–330

    Article  Google Scholar 

  • Storlazzi CD, Cheriton OM, Messina AM, Biggs TW (2018) Meteorologic, oceanographic, and geomorphic controls on circulation and residence time in a coral reef-lined embayment: Faga’alu Bay, American samoa. Coral Reefs 37:457–469

    Article  Google Scholar 

  • Sun K, Ren JS, Bai T, Zhang J, Liu Q, Wu W, Zhao Y, Liu Y (2020) A dynamic growth model of Ulva prolifera: application in quantifying the biomass of green tides in the Yellow Sea. China Ecol Model 428:109072

    Article  CAS  Google Scholar 

  • Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G, Brinkman R (2011) Nearshore circulation in a tropical fringing reef system. J Geophys Res 116:C02016. https://doi.org/10.1029/2010JC006439

    Article  Google Scholar 

  • Tartinville B, Deleersnijder E, Rancher J (1997) The water residence time in the Mururoa atoll lagoon: sensitivity analysis of a three-dimensional model. Coral Reefs 16:193–203

    Article  Google Scholar 

  • Umgiesser G, Ferrarin C, Cucco A, De Pascalis F, Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J Geophys Res Ocean 119(4):2212–2226

    Article  Google Scholar 

  • Viero DP, Defina A (2016) Renewal time scales in tidal basins: climbing the tower of babel. Sustainable hydraulics in the era of global change. CRC Press Taylor and France, Boca Raton, Florida, pp 338–345

    Google Scholar 

  • Winter G, Castelle B, Lowe RJ, Hansen JE, McCall R (2020) When is flow re-entrainment important for the flushing-time in coastal reef systems? Cont Shelf Res 206:104194

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Laigle, P. Laigle, G. Sarrailh, V. Bouvot, E. Le Tesson, J. Herlin, and C. Helleringer for their logistical support during field trips, to J. Lefèvre for sharing personal data regarding water surface slope at PGD, and to two anonymous reviewers who made constructive comments on the manuscript. The study was funded by the ELADE project, with operating budget supported by La province Sud and salary budget supported by Ifremer (grant C.458-19).

Funding

The study was funded by the ELADE project, with operating budget supported by La province Sud, grant C.458–19 to Simon Van Wynsberge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Van Wynsberge.

Ethics declarations

Competing interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalau, N., Van Wynsberge, S., Soulard, B. et al. A quick and cost-effective method for modelling water renewal in shallow coral reef lagoons. Coral Reefs 41, 1611–1626 (2022). https://doi.org/10.1007/s00338-022-02319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02319-7

Keywords

Navigation