Skip to main content

Advertisement

Log in

Tissue fusion and enhanced genotypic diversity support the survival of Pocillopora acuta coral recruits under thermal stress

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Scleractinian coral recruitment provides critical support for reef persistence under the threat of global climate change. The high mortality rates exhibited in early life history stages are further increased under thermal stress, compromising reef recruitment. Tissue fusion with neighboring recruits is one potential early life history strategy that has been shown to support recruit survival (particularly in brooding species) by promoting rapid increases in colony size and potential opportunities for enhanced intracolonial genetic diversity. However, tissue fusion also presents risks in the cost of growth and maintenance of relationships between genetically distinct individuals. Although fusion is one potential strategy for recruit survival, the effects of colony size and enhanced genetic diversity achieved through fusion on survival under ocean warming conditions are not well understood. Here we tested the effect of tissue fusion on Pocillopora acuta recruit survival under ambient and high temperature stress by manipulating the size and parental genotypic richness in fused recruits. We provided opportunities for tissue fusion in groups of recruits with enhanced parental genotypic richness (1–4 parent genotypes) and size (1–4 recruits) and tracked subsequent growth and survival (N = 137). Under ambient temperature (1–15 days post-settlement), fusion significantly increased survivorship regardless of parental genotypic richness, while negative competitive effects existed between closely settled, but unfused recruits. Under high temperature (+ 2.5 °C; 16–47 days post-settlement), the median survival of fused recruits was 5 days longer than individuals, with 1.5 days added to median survival when composed of multiple parental genotypes. These results demonstrate that tissue fusion during coral recruitment can improve survival and provides insights on early life history strategies to increase tolerance to ocean warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Accessibility

All data and scripts are publicly available on Zenodo at the following https://doi.org/10.5281/zenodo.4323907. Raw sequence data are available at NCBI under PRJNA629530.

References

  • Álvarez-Noriega M, Baird AH, Bridge TCL, Dornelas M, Fontoura L, Pizarro O, Precoda K, Torres-Pulliza D, Woods RM, Zawada K, Madin JS (2018) Contrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian corals. Coral Reefs 37:527–532

    Article  Google Scholar 

  • Amar KO, Rinkevich B (2010) Mounting of erratic histoincompatible responses in hermatypic corals: A multi-year interval comparison. J Exp Biol 213:535–540

    Article  PubMed  Google Scholar 

  • Amar KO, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahr KD, Tran T, Jury CP, Toonen RJ (2020) Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15:e0228168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barki Y, Gateño D, Graur D, Rinkevich B (2002) Soft-coral natural chimerism: A window in ontogeny allows the creation of entities comprised of incongruous parts. Mar Ecol Prog Ser 231:91–99

    Article  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci 110:1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Baums IB, Devlin-Durante MK, Polato NR, Xu D, Giri S, Altman NS, Ruiz D, Parkinson JE, Boulay JN (2013) Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32:703–717

    Article  Google Scholar 

  • Bay RA, Palumbi SR (2014) Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol 24:2952–2956

    Article  CAS  PubMed  Google Scholar 

  • Bena C, Van Woesik R (2004) The impact of two bleaching events on the survival of small coral colonies (Okinawa, Japan). Bull Mar Sci 75:115–125

    Google Scholar 

  • Bythell JC, Brown BE, Kirkwood TBL (2018) Do reef corals age? Biol Rev 93:1192–1202

    Article  PubMed  Google Scholar 

  • Cabaitan PC, Yap HT, Gomez ED (2015) Performance of single versus mixed coral species for transplantation to restore degraded reefs. Restor Ecol 23:349–356

    Article  Google Scholar 

  • Cameron KA, Harrison PL (2020) Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Sci Rep 10:5488

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou LM, Toh TC, Ben TK, Ng CSL, Cabaitan P, Tun K, Goh E, Afiq-Rosli L, Taira D, Du RCP, Loke HX, Khalis A, Li J, Song T (2016) Differential response of coral assemblages to thermal stress underscores the complexity in predicting bleaching susceptibility. PLoS ONE 11:e0159755

    Article  PubMed  PubMed Central  Google Scholar 

  • Clements CS, Hay ME (2019) Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat Ecol Evol 3:178–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Conti-Jerpe IE, Thompson PD, Wai C, Wong M, Lina N, Duprey NN, Moynihan MA, Baker DM (2020) Trophic strategy and bleaching resistance in reef-building corals. Sci Adv 6:eaaz5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunning R, Silverstein RN, Baker AC (2015) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B Biol Sci 282:20141725

    Article  CAS  Google Scholar 

  • Doropoulos C, Ward S, Roff G, González-Rivero M, Mumby PJ (2015) Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats. PLoS ONE 10:e0128535

    Article  PubMed  PubMed Central  Google Scholar 

  • Drury C (2020) Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 29:448–465

    Article  PubMed  Google Scholar 

  • Drury C, Greer J, Baums I, B G, Lirman D (2019) Clonal diversity impacts coral cover in Acropora cervicornis thickets: Potential relationships between diversity, growth, and polymorphisms. Ecol Evol 9:4518–4531

  • Fine M, Oren U, Loya Y (2002) Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser 234:119–125

    Article  Google Scholar 

  • Frank U, Oren U, Loya Y, Rinkevich B (1997) Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proc R Soc B Biol Sci 264:99–104

    Article  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71

    Article  PubMed  Google Scholar 

  • Gorospe KD, Karl SA (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol Ecol 22:3721–3736

    Article  PubMed  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nat Lett 440:1186–1189

    Article  CAS  Google Scholar 

  • Hancock JR, Barrows AR, Roome TC, Huffmyer AS, Matsuda SB, Munk NJ, Rahnke SA, Drury C (2021) Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth and resilience in juvenile Montipora capitata. Mar Ecol Prog Ser 657:123–133

    Article  Google Scholar 

  • Hidaka M (1985) Tissue compatibility between colonies and between newly settled larvae of Pocillopora damicornis. Coral Reefs 4:111–116

    Article  Google Scholar 

  • Hidaka M, Yurugi K, Sunagawa S, Kinzie RA (1997) Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reefs 16:13–20

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Hughes A, Stachowicz J (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci U S A 101:8998–9002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes T, Barnes M, Bellwood D, Cinner J, Cumming G, Jackson JC, Kleypas J, Van De Leemput I, Lough JM, Morrison TH, Palumbi SR, Van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • Hughes T, Kerry J, Baird A, Connolly S, Chase T, Dietzel A, Hill T, Hoey A, Hoogenboom M, Jacobson M, Kerswell A, Madin J, Mieog A, Paley A, Pratchett MS, Torda G, Woods RM (2019) Global warming impairs stock–recruitment dynamics of corals. Nature 568:387–390

    Article  CAS  PubMed  Google Scholar 

  • Kenkel CD, Matz MV (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1:0014

    Article  Google Scholar 

  • Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15:1–13

    Article  Google Scholar 

  • Korner-Nievergelt F, Roth T, von Felten S, Guelat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS, and Stan. Elsevier, New York, NY

    Google Scholar 

  • Kuznetsova A, Brockhoff B, Christensen HB (2017) lmerTest: Tests in Linear Mixed Effects Models. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Ladd MC, Shantz AA, Bartels E, Burkepile DE (2017) Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar Ecol Prog Ser 572:129–139

    Article  Google Scholar 

  • Lakkis FG, Dellaporta SL, Buss LW (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4:236–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leahy SM, Kingsford MJ, Steinberg CR (2013) Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the Local Scale. PLoS ONE 8:e70400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loya Y, Sakai K, Nakano Y, Van WR (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Manzello DP, Brandt M, Smith TB, Lirman D, Hendee JC, Nemeth RS (2007) Hurricanes benefit bleached corals. Proc Natl Acad Sci 104:12035–12039

    Article  CAS  PubMed  Google Scholar 

  • Manzello DP, Matz MV, Enochs IC, Valentino L, Carlton RD, Kolodziej G, Serrano X, Towle EK, Jankulak M (2019) Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob Chang Biol 25:1016–1031

    Article  PubMed  Google Scholar 

  • McWilliam M, Chase TJ, Hoogenboom MO (2018a) Neighbor diversity regulates the productivity of coral assemblages. Curr Biol 28:3634–3639

    Article  CAS  PubMed  Google Scholar 

  • McWilliam M, Hoogenboom MO, Baird AH, Kuo C-Y, Madin JS, Hughes TP (2018b) Biogeographical disparity in the functional diversity and redundancy of corals. Proc Natl Acad Sci 115:3084–3089

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Soares H, Chen ICK, Fitzpatrick K, Velicer GJ (2014) Chimaeric load among sympatric social bacteria increases with genotype richness. Proc R Soc B Biol Sci 281:20140285

    Article  Google Scholar 

  • Morikawa MK, Palumbi SR (2019) Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci 116:10586–10591

    Article  CAS  PubMed  Google Scholar 

  • Nozawa Y, Hirose M (2011) When does the window close?: The onset of allogeneic fusion 2–3 years post-settlement in the scleractinian coral Echinophyllia aspera. Zool Stud 50:396

    Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    Article  CAS  PubMed  Google Scholar 

  • Puill-Stephan E, Willis BL, van Herwerden L, van Oppen MJH (2009) Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS ONE 4:e7751

    Article  PubMed  PubMed Central  Google Scholar 

  • Puill-Stephan E, van Oppen MJH, Pichavant-Rafini K, Willis BL (2012a) High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora. Proc R Soc B Biol Sci 279:699–708

    Article  CAS  Google Scholar 

  • Puill-Stephan E, Willis BL, Abrego D, Raina JB, van Oppen MJH (2012b) Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs 31:1019–1028

    Article  Google Scholar 

  • Putnam HM, Barott K, Ainsworth T, Gates R (2017) The vulnerability and resilience of reef-building corals. Curr Biol 27:R528–R540

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. https://www.R-project.org/

  • Raymundo LJ, Maypa AP (2004) Getting bigger faster: Mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 14:281–295

    Article  Google Scholar 

  • Reusch T, Ehlers A, Hammerli A, Worm B (2005) Ecosystem recovery enhanced by genotypic diversity. PNAS 102:2826–2831

    Article  CAS  PubMed  Google Scholar 

  • Richmond RH, Jokiel PL (1984) Lunar periodicty in larva release in the reef coral Pocillopora damicornis at Eneweak and Hawaii. Bull Mar Sci 34:280–287

    Google Scholar 

  • Rinkevich B (2019) Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob Chang Biol 25:1198–1206

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1983) Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1:161–172

    Article  Google Scholar 

  • Ritson-Williams R, Arnold S, Fogarty N, Steneck RS, Vermeij M, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Article  Google Scholar 

  • Roff G, Hoegh-Guldberg O, Fine M (2006) Intra-colonial response to Acroporid “white syndrome” lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25:255–264

    Article  Google Scholar 

  • Schweinsberg M, Weiss LC, Striewski S, Tollrian R, Lampert KP (2015) More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Mol Ecol 24:2673–2685

    Article  PubMed  Google Scholar 

  • Shenkar N, Fine M, Loya Y (2005) Size matters: Bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188

    Article  Google Scholar 

  • Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci 96:9148–9153

    Article  CAS  PubMed  Google Scholar 

  • Swain TD, Bold EC, Osborn PC, Baird AH, Westneat MW, Backman V, Marcelino LA (2018) Physiological integration of coral colonies is correlated with bleaching resistance. Mar Ecol Prog Ser 586:1–10

    Article  CAS  Google Scholar 

  • Toh TC, Soon C, Ng L, Wei J, Peh K, Ben TK, Chou LM (2014) Augmenting the Post-Transplantation Growth and Survivorship of Juvenile Scleractinian Corals via Nutritional Enhancement. PLoS ONE 9:e98529

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal-Dupiol J, Chaparro C, Pratlong M, Pontaroti P, Grunau C, Mitta G (2019) Sequencing, de novo assembly and annotation of the genome of the scleractinian coral, Pocillopora acuta. bioRxiv 698688

  • Zhang SY, Speare KE, Long ZT, McKeever KA, Gyoerkoe M, Ramus AP, Mohorn Z, Akins KL, Hambridge SM, Graham NAJ, Nash KL, Selig ER, Bruno JF (2014) Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2:308

    Article  Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications 8:14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this manuscript to the life and legacy of our friend and mentor, Dr. Ruth Gates. We thank S. Matsuda, N. Bean, C. Harris for assistance in conducting this study and J. Hancock and the HIMB facilities staff for providing experimental support. We thank M. Donahue, E. Madin, two anonymous reviewers, and the topic editor for comments that improved the manuscript and also thank S. Matsuda for assistance in producing Fig. 1. Technical support and computing resources from University of Hawai‘i Information Technology Services—Cyberinfrastructure are gratefully acknowledged.

Funding

This work was supported by the National Science Foundation Graduate Research Fellowship to AH (DGE1329626), Paul G. Allen Philanthropies to RG, Philanthropic Education Organization Scholar Award to AH, the Charles H. and Margaret B. Edmondson Research Fund to AH, and the Colonel Willys E. Lord, DVM and Sandina L. Lord Scholarship Fund to AH. Collections were made under SAP-2019-16 issued to HIMB.

Author information

Authors and Affiliations

Authors

Contributions

This is HIMB contribution #1844 and SOEST contribution #11242.

Corresponding author

Correspondence to Ariana S. Huffmyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Carly Kenkel

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary material 1 (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huffmyer, A.S., Drury, C., Majerová, E. et al. Tissue fusion and enhanced genotypic diversity support the survival of Pocillopora acuta coral recruits under thermal stress. Coral Reefs 40, 447–458 (2021). https://doi.org/10.1007/s00338-021-02074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02074-1

Keywords

Navigation