Advertisement

Coral Reefs

, Volume 33, Issue 1, pp 169–180 | Cite as

Effect of salinity on the skeletal chemistry of cultured scleractinian zooxanthellate corals: Cd/Ca ratio as a potential proxy for salinity reconstruction

  • Chloé Pretet
  • Stéphanie Reynaud
  • Christine Ferrier-Pagès
  • Jean-Pierre Gattuso
  • Balz S. Kamber
  • Elias SamankassouEmail author
Report

Abstract

The effect of salinity on the elemental and isotopic skeletal composition of modern zooxanthellate scleractinian corals (Acropora sp., Montipora verrucosa and Stylophora pistillata) was investigated in order to evaluate potential salinity proxies. Corals were cultured in the laboratory at three salinities (36, 38 and 40). The other environmental parameters were kept constant. For all species analyzed, Sr/Ca, Mg/Ca, U/Ca and Li/Ca ratios were not influenced by salinity changes. The Ba/Ca ratio also lacks a systematic relationship with salinity and exhibits high inter-generic variations, up to one order of magnitude. On the contrary, the Cd/Ca ratio decreases as a function of increasing salinity, and δ18O and δ13C also presented a significant response, but with opposite trends to salinity variations. Since Cd/Ca is usually considered as an upwelling proxy, its salinity dependence could compromise the upwelling signal, unless some corrections can be carried out. Regardless, if the dependence found in the present dataset proved to be widespread and systematic, the Cd/Ca ratio could represent a promising salinometer awaiting further investigation. This study also confirmed the reliability of the well-established temperature proxies Sr/Ca, Mg/Ca and U/Ca, as these ratios were insensitive to salinity variations. Moreover, our results showed that δ18O or δ13C can be considered as reliable temperature recorders as far as the salinity effect is removed from the parameter reconstructed (e.g., temperature). Investigating the influence of salinity on the skeletal chemistry of scleractinian corals grown under controlled environmental conditions confirmed previous results, validated isotopic corrections, and identified a promising proxy of salinity.

Keywords

Sea-surface salinity (SSS) Sea-surface temperature (SST) Salinity proxy Elemental ratios Carbon isotopes Oxygen isotopes Scleractinians Laboratory culture 

Notes

Acknowledgments

The support of the Swiss National Science Foundation (SNF) through Grants 20MA21-115944 and 200020-140618 in the frame of the European Science Foundation (ESF) EUROCORES Program EuroMARC is acknowledged. This work is a contribution to the European Project on Ocean Acidification (EPOCA), which received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 211384. We would like to thank M. Joachimski (GeoZentrum Nordbayern, Erlangen, Germany) for analyses of C and O isotopes. Thanks are due to M. Holcomb (Perth University, Australia) for fruitful discussion and an anonymous reviewer for comments.

References

  1. Adam J, Green T (2011) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the origins of intraplate basaltic magmas. Contrib Mineral Petrol 161:883–899CrossRefGoogle Scholar
  2. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a mew mechanism for vital effects. Geochim Cosmochim Acta 67(6):1129–1143CrossRefGoogle Scholar
  3. Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363CrossRefGoogle Scholar
  4. Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67:231–246CrossRefGoogle Scholar
  5. Allison N (1996) Comparative determination of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470CrossRefGoogle Scholar
  6. Allison N, Tudhope AW (1992) Nature and significance of geochemical variations in coral skeletons as determined by ion microprobe analysis. Proceedings of the 7th International Coral Reef Symposium, Guam, Vol.1, 173-178Google Scholar
  7. Asami R, Yamada T, Iryu Y, Meyer CP, Quinn T, Paulay G (2004) Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 212:1–22CrossRefGoogle Scholar
  8. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647PubMedCrossRefGoogle Scholar
  9. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79CrossRefGoogle Scholar
  10. Cahyarini SY, Pfeiffer M, Timm O, Dullo WC, Schönberg DG (2008) Reconstructing seawater δ18O from paired coral δ18O and Sr/Ca ratios: Methods, error analysis and problem, with examples from Tahiti (French Polynesia) and Timor (Indonesia). Geochim Cosmochim Acta 72:2841–2853CrossRefGoogle Scholar
  11. Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176:231–233CrossRefGoogle Scholar
  12. Carriquiry JD, Villaescusa JA (2010) Coral Cd/Ca and Mn/Ca records of El Niño variability in the Gulf of California. Climate of the Past Discussion 6:63–85CrossRefGoogle Scholar
  13. Case DH, Robinson LF, Auro ME, Gagnon AC (2010) Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth Planet Sci Lett 300:215–225CrossRefGoogle Scholar
  14. Chen T, Yu K, Li S, Chen T, Shi Q (2011) Anomalous Ba/Ca signals associated with low temperature stresses in Porites corals from Daya Bay, northern South China Sea. J Environ Sci (China) 23:1452–1459CrossRefGoogle Scholar
  15. Cohen AL, Hart SR (2004) Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19:PA4031CrossRefGoogle Scholar
  16. Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16:20–22CrossRefGoogle Scholar
  17. Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Paleogeogr Paleoclim Paleoecol 232:408–428CrossRefGoogle Scholar
  18. Corrège T, Gagan MK, Beck JW, Burr GS, Cabioch G, Le Cornec F (2004) Interdecadal variation in the extent of South Pacific tropical waters during the Younger Drys event. Nature 428:927–929PubMedCrossRefGoogle Scholar
  19. Cotta AJB, Enzweiler J (2012) Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS. Geostand Geoanal Res 36:27–50CrossRefGoogle Scholar
  20. De Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperature. Science 269:1247–1249PubMedCrossRefGoogle Scholar
  21. Delaney ML, Linn LJ, Druffel ERM (1993) Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands. Geochim Cosmochim Acta 57:347–354CrossRefGoogle Scholar
  22. DeLong KL, Quinn TM, Taylor FW (2007) Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: a replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22:PA421CrossRefGoogle Scholar
  23. DeLong KL, Flannery JA, Maupin CR, Poore RZ, Quinn TM (2011) A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Paleogeogr Paleoclim Paleoecol 307:117–128CrossRefGoogle Scholar
  24. Downs CA, Kramarsky-Winter E, Woodley CM, Downs A, Winters G, Loya Y, Ostrander GK (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851PubMedCrossRefGoogle Scholar
  25. Druffel ERM (1997) Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proc Nat Acad Sci USA 94:8354–8361PubMedCrossRefGoogle Scholar
  26. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chem Geol 134:311–326CrossRefGoogle Scholar
  27. Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aquaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64:3123–3132CrossRefGoogle Scholar
  28. Fairbanks RG, Dodge RE (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis. Geochim Cosmochim Acta 43:1009–1020CrossRefGoogle Scholar
  29. Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238CrossRefGoogle Scholar
  30. Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404CrossRefGoogle Scholar
  31. Felis T, Pätzold J (2003) Climate records from corals. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers for Europe. Springer: Berlin, pp 11–27CrossRefGoogle Scholar
  32. Felis T, Suzuki A, Kuhnert H, Dima M, Lohmann G, Kawahata H (2009) Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37:527–530CrossRefGoogle Scholar
  33. Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappel J, McCulloch MT, Head MJ (1998) Temperature and surface ocean water balance of mid-Holocene tropical western Pacific. Science 279:1014–1018PubMedCrossRefGoogle Scholar
  34. Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64CrossRefGoogle Scholar
  35. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30 degrees N Mid-Atlantic-Ridge). Earth Planet Sci Lett 279:110–122CrossRefGoogle Scholar
  36. Govindaraju K (1994) Complication of working values and simple description for 383 geostandards, Geostandards Newsletter, 18 (1)Google Scholar
  37. Hanano D, Weis D, Scoates JS, Aciego S, DePaolo DJ (2010) Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochemistry Geophysics Geosystems, 11Google Scholar
  38. He YH, Zhao GC, Sun M, Han YG (2010) Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos 114:186–199CrossRefGoogle Scholar
  39. Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13CrossRefGoogle Scholar
  40. Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 295:1511–1514PubMedCrossRefGoogle Scholar
  41. Hergt J, Woodhead J, Schofield A (2007) A-type magmatism in the Western Lachlan fold belt? A study of granites and rhyolites from the Grampians region, Western Victoria. Lithos 97:122–139CrossRefGoogle Scholar
  42. Hu ZC, Gao S (2008) Upper crustal abundances of trace elements: A revision and update. Chem Geol 253:205–221CrossRefGoogle Scholar
  43. Imai N, Terashima S, Itoh S, Ando A (1995) Compilation of analytical data for minor and trace-elements in 17 GSJ Geochemical reference samples, igneous rock series. Geostandards Newsletter 19:135–213CrossRefGoogle Scholar
  44. Inoue M, Suzuki A, Nohara M, Hibino K, Kawahata H (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperature. Geophys Res Lett 34:L12611CrossRefGoogle Scholar
  45. Juillet-Leclerc A, Reynaud S (2010) Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates. Biogeosciences 7:893–906CrossRefGoogle Scholar
  46. Kamber BS (2009) Geochemical fingerprinting: 40 years of analytical development and real world applications. Appl Geochem 24:1074–1086CrossRefGoogle Scholar
  47. Kilbourne KH, Quinn TM, Taylor FW, Delcroix T, Gouriou Y (2004) El Niño-Southern oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography 19:PA4002Google Scholar
  48. Kim ST, Mucci A, Taylor BE (2007) Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75° C: Revisited. Chem Geol 246:135–146CrossRefGoogle Scholar
  49. Le Bec N, Juillet-Leclerc A, Corrège T, Blamart D, Delcroix T (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophy Res Lett 27:3897–3900CrossRefGoogle Scholar
  50. Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in Equatorial Pacific upwelling. Nature 340:373–376CrossRefGoogle Scholar
  51. Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Paleogeogr Paleoclim Paleoecol 204:115–143CrossRefGoogle Scholar
  52. Maier C, Felis T, Pätzold J, Bak RPM (2004) Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites. Mar Geol 207:193–208CrossRefGoogle Scholar
  53. Makishima A, Kitagawa H, Nakamura E (2011) Simultaneous Determination of Cd, In, Tl and Bi by Isotope Dilution-Internal Standardization ICP-QMS with Corrections Using Externally Measured MoO+/Mo+ Ratios. Geostand Geoanal Res 35:57–67CrossRefGoogle Scholar
  54. Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004a) Effect of mineralogy, salinity and temperature on Li/Ca and Li isotope composition of calcium carbonates. Chem Geol 212:5–15CrossRefGoogle Scholar
  55. Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004b) Temperature dependance of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet. Sci Lett 222:615–624CrossRefGoogle Scholar
  56. Marshall JF, McCulloch MT (2001) Evidence of El Niño and the Indian Ocean Dipole from Sr/Ca derived SSTs for modern corals at Christmas Island, eastern Indian Ocean. Geophys Res Lett 28:3453–3456CrossRefGoogle Scholar
  57. Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280CrossRefGoogle Scholar
  58. Matthews KA, McDonough WF, Grottoli AG (2006) Cadmium measurements in coral skeleton using isotope dilution-inductively coupled plasma-mass spectrometry. Geochemistry Geophysics Geosystems 7Google Scholar
  59. Matthews KA, Grottoli AG, McDonough WF, Palardy JE (2008) Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca). Geochim Cosmochim Acta 72:537–4550Google Scholar
  60. McConnaughey TA (1989) Oxygen and carbon isotope disequilibria in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  61. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia and the 1982–1983 El Nino. Geochim Cosmochim Acta 58:2747–2754CrossRefGoogle Scholar
  62. McCulloch MT, Mortimer GE, Esat T, Xianhua L, Pillans B, Chappell J (1996) High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth Planet Sci Lett 138:169–178CrossRefGoogle Scholar
  63. Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys. Res. Lett 31:L23306CrossRefGoogle Scholar
  64. Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59:2025–2042CrossRefGoogle Scholar
  65. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963PubMedCrossRefGoogle Scholar
  66. Montaggioni LF, Le Cornec F, Corrège T, Cabioch G (2006) Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Paleogeogr Paleoclim Paleoecol 237:436–455CrossRefGoogle Scholar
  67. Moune S, Gauthier PJ, Gislason SR, Sigmarsson G (2006) Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochim Cosmochim Acta 70:461–479CrossRefGoogle Scholar
  68. Muthiga NA, Szmant AM (1987) The effects of salinity stress on the rate of aerobic respiration and photosynthesis in the hermatypic coral Siderastrea siderea. Biol Bull 173:539–551CrossRefGoogle Scholar
  69. Norman MD, Duncan RA, Huard JJ (2010) Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim Cosmochim Acta 74:763–783CrossRefGoogle Scholar
  70. Pilson M.E.Q. (1998) An Introduction to the Chemistry of the Sea. Prentice-Hall, Inc. Upper Saddle River N.J. 431pGoogle Scholar
  71. Pretet C, Samankassou E, Felis T, Reynaud S, Böhm F, Eisenhauer A, Ferrier-Pagès C, Gattuso J-P, Camoin G (2013) Constraining calcium isotope fractionation (δ44/40Ca) in modern and fossil scleractinian coral skeleton. Chem Geol 340:49–58CrossRefGoogle Scholar
  72. Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17:1062. doi: 10.1029/2000PA000528 CrossRefGoogle Scholar
  73. Ren L, Linsley BK, Wellington GM, Schrag DP, Hugh-Guldberg O (2002) Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67:1609–1621CrossRefGoogle Scholar
  74. Reuer MK, Boyle EA, Cole JE (2003) A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet Sci Lett 210:437–452CrossRefGoogle Scholar
  75. Reynaud S, Ferrier-Pagès C, Meibom A, Mostefaoui S, Mortlock R, Fairbanks R, Allemand D (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian corals Acropora sp. Geochim Cosmochim Acta 71:354–362CrossRefGoogle Scholar
  76. Reynaud-Vaganay S (2000) Contrôle environnemental de la physiologie et de la composition isotopique du squelette des Scléractiniaires à zooxanthelles: approche expérimentale. Thèse de Doctorat, Université de Nice-Sophia Antipolis, 215 pGoogle Scholar
  77. Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso JP (2001) Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeo Palaeoclim Palaeoeco 175:393–404CrossRefGoogle Scholar
  78. Reynaud-Vaganay S, Gattuso JP, Cuif JP, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Progr Ser 180:121–130CrossRefGoogle Scholar
  79. Rollion-Bard C, Vigier N, Meibom A, Blamart D, Reynaud S, Rodolfo-Metalpa R, Martin S, Gattuso JP (2009) Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals. Earth Planet Sci Lett 286:63–70CrossRefGoogle Scholar
  80. Rosenbaum J, Sheppard SM (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150CrossRefGoogle Scholar
  81. Sands DG, Rosman KJR (1997) Cd, Gd and Sm concentrations in BCR-1, BHVO-1, BIR-1, DNC-1, MAG-1, PCC-1 and W-2 by isotope dilution thermal ionization mass spectrometry. Geostandards Newsletter 21:77–83CrossRefGoogle Scholar
  82. Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59:2009–2024CrossRefGoogle Scholar
  83. Sinclair DJ, McCulloch MT (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeogr Palaeoclim Palaeoecol 214:155–174CrossRefGoogle Scholar
  84. Sinclair DJ, Williams B, Risk M (2006) A biological origin for climate signals in corals—Trace element “vital effects” are ubiquitous in Scleractinian coral skeletons. Geophys Res Lett 33:L17707CrossRefGoogle Scholar
  85. Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium–calcium thermometry in coral skeletons. Science 204:404–406PubMedCrossRefGoogle Scholar
  86. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80CrossRefGoogle Scholar
  87. van der Straaten F, Schenk V, John T, Gao J (2008) Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid–rock interaction in the subduction channel. Chem Geol 255:195–219CrossRefGoogle Scholar
  88. van Geen A, Husby DM (1996) Cadmium in the California Current system: Tracer of past and present upwelling. J Geophys Res 101:3489–3507CrossRefGoogle Scholar
  89. van Geen A, Luoma SN, Fuller CC, Anima R, Clifton HE, Trumbore S (1992) Evidence from Cd/Ca ratios in foraminifera for greater upwelling off California 4,000 years ago. Nature 358:54–56CrossRefGoogle Scholar
  90. Weber JN (1973) Incorporation of strontium into reef coral skeletal carbonate. Geochim Cosmochim Acta 37:2173–2190CrossRefGoogle Scholar
  91. Weber JN, Woodhead PMJ (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chem Geol 6:93–117CrossRefGoogle Scholar
  92. Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef carbonates. J Geophys Res 77:463–473CrossRefGoogle Scholar
  93. Wei G, Sun M, Li X, Nie B (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Paleogeogr Paleoclim Paleoecol 162:59–74CrossRefGoogle Scholar
  94. Weis D, Kieffer B, Maerschalk C, Pretorius W, Barling J (2005) High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem Geophy Geosyst 6Google Scholar
  95. Yi W, Halliday AN, Lee DC, Rehkamper M (1998) Precise determination of cadmium, indium and tellurium using multiple collector ICP-MS. Geostand. Newslett. 22:173–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chloé Pretet
    • 1
    • 6
  • Stéphanie Reynaud
    • 2
  • Christine Ferrier-Pagès
    • 2
  • Jean-Pierre Gattuso
    • 3
    • 4
  • Balz S. Kamber
    • 5
  • Elias Samankassou
    • 1
    Email author
  1. 1.Section of Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Centre Scientifique de MonacoMonacoFrance
  3. 3.CNRS-INSU, Laboratoire d’Océanographie de VillefrancheVillefranche-sur-Mer CedexFrance
  4. 4.UPMC Université Paris 06, Observatoire Océanologique de VillefrancheVillefranche-sur-Mer CedexFrance
  5. 5.Department of GeologyTrinity College DublinDublin 2Ireland
  6. 6.Department für UmweltgeowissenschaftenUniversität WienWienAustria

Personalised recommendations