Skip to main content

Advertisement

Log in

Potassium and other minor elements in Porites corals: implications for skeletal geochemistry and paleoenvironmental reconstruction

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

We investigated how the K/Ca, Na/Ca, Mg/Ca, and Sr/Ca ratios of powders ground from Porites coral skeletons are changed by cumulative chemical treatments to the powders: first with distilled/deionized water (DDW), next with 30 % H2O2 and then with 0.004 mol l−1 HNO3. The K/Ca, Na/Ca, and Mg/Ca ratios were decreased with the DDW treatment and then increased with the H2O2 and HNO3 treatments; the Sr/Ca ratio was slightly decreased through the cumulative treatments, suggesting fine-scale (tens of μm or less) elemental heterogeneities in the skeleton—K, Na, and Mg are significantly enriched at the skeletal surface and also at the center of calcification (COC); in contrast, the heterogeneity of Sr is very small. We suggest that the principal mechanisms of K incorporation into coral skeleton are (1) ion incorporation into lattice defects/distortions and (2) ion adsorption onto crystal discontinuities (including crystal–organic matter interfaces) as forms of K+ and KSO4 . Furthermore, we measured the element/Ca ratios of a modern Porites coral skeleton along its growth direction at 2-mm intervals. Results showed that all the element/Ca ratios displayed annual cycles, that the K/Ca and Na/Ca ratios covaried with each other, and that the annual-minimum K/Ca and Na/Ca ratios coincided with the annual high-density band in the skeleton. It is unclear what environmental factors may cause the covarying annual cycles of the K/Ca and Na/Ca ratios; however, as a possible explanation, the cycles may be due not to environmental factors, but to a combined effect of (1) the K and Na enrichment at the COC, (2) annual bands of high- and low-density skeleton, and (3) mm-scale element/Ca measurements along the skeletal growth direction. This kind of effect on geochemical proxies of which the concentrations significantly differ between the COC and surrounding skeleton may generate false or distorted paleoenvironmental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allison N (1996) Geochemical anomalies in coral skeletons and their possible implications for palaeoenvironmental analyses. Mar Chem 55:367–379

    Article  CAS  Google Scholar 

  • Allison N, Finch AA (2004) High-resolution Sr/Ca records in modern Porites lobata corals: Effects of skeletal extension rate and architecture. Geochem Geophys Geosyst 5:Q05001. doi:10.1029/2004GC000696

    Article  Google Scholar 

  • Allison N, Finch AA, Tudhope AW, Newville M, Sutton SR, Ellam RM (2005) Reconstruction of deglacial sea surface temperatures in the tropical Pacific from selective analysis of a fossil coral. Geophys Res Lett 32:L17609. doi:10.1029/2005GL023183

    Article  Google Scholar 

  • Amiel AJ, Friedman GM, Miller DS (1973) Distribution and nature of incorporation of trace elements in modern aragonitic corals. Sedimentology 20:47–64

    Article  CAS  Google Scholar 

  • Bar-Matthews M, Wasserburg GJ, Chen JH (1993) Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U/238U. Geochim Cosmochim Acta 57:257–276

    Article  CAS  Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Récy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  PubMed  CAS  Google Scholar 

  • Busenberg E, Plummer LN (1985) Kinetic and thermodynamic factors controlling the distribution of SO4 2− and Na+ in calcites and selected aragonites. Geochim Cosmochim Acta 49:713–725

    Article  CAS  Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Article  Google Scholar 

  • Clode PL, Marshall AT (2003) Skeletal microstructure of Galaxea fascicularis exsert septa: a high-resolution SEM study. Biol Bull 204:146–154

    Article  PubMed  Google Scholar 

  • Cohen AL, Gaetani GA (2010) Ion partitioning and the geochemistry of coral skeletons: solving the mystery of the vital effect. In: Prieto M, Stoll H (eds) European-Mineralogical-Union Notes in Mineralogy, vol 10., Ion partitioning in ambient-temperature aqueous systems. The European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland, London, pp 377–397

    Google Scholar 

  • Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83

    Article  CAS  Google Scholar 

  • Culkin F, Cox RA (1966) Sodium, potassium, magnesium, calcium and strontium in sea water. Deep-Sea Res 13:789–804

    CAS  Google Scholar 

  • Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, New York

    Book  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404

    Article  Google Scholar 

  • Finch AA, Allison N (2008) Mg structural state in coral aragonite and implications for the paleoenvironmental proxy. Geophys Res Lett 35:L08704. doi:10.1029/2008GL033543

  • Gagnon AC, Adkins JF, Fernandez DP, Robinson LF (2007) Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet Sci Lett 261:280–295

    Article  CAS  Google Scholar 

  • Gautret P, Cuif JP, Stolarski J (2000) Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118

    Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60:3075–3084

    Article  CAS  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179

    Article  CAS  Google Scholar 

  • Horibe Y, Endo K, Tsubota H (1974) Calcium in the South Pacific, and its correlation with carbonate alkalinity. Earth Planet Sci Lett 23:136–140

    Article  CAS  Google Scholar 

  • Kitano Y (1990) Geochemistry of carbonate sediments. Tokai University Press, Tokyo (in Japanese)

    Google Scholar 

  • Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340:373–376

    Article  CAS  Google Scholar 

  • Meibom A, Cuif JP, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31:L23306. doi:10.1029/2004GL021313

    Article  Google Scholar 

  • Meibom A, Yurimoto H, Cuif JP, Domart-Coulon I, Houlbreque F, Constantz B, Dauphin Y, Tambutté E, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33:L11608. doi:10.1029/2006GL025968

    Article  Google Scholar 

  • Meibom A, Mostefaoui S, Cuif JP, Dauphin Y, Houlbreque F, Dunbar R, Constantz B (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34:L02601. doi:10.1029/2006GL028657

    Article  Google Scholar 

  • Millero FJ, Leung WH (1976) The thermodynamics of seawater at one atmosphere. Am J Sci 276:1035–1077

    Article  CAS  Google Scholar 

  • Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59:2025–2042

    Article  CAS  Google Scholar 

  • Mitsuguchi T (2000) Reconstruction of palaeoceanic environment from multi-element analysis of annually-banded coral skeletons. Ph.D. thesis, Nagoya University, p 91

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963

    Article  PubMed  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Uchida T, Kawana T, Isdale PJ (1998) An attempt to recover middle Holocene sea surface temperature in Okinawa region from coral Mg/Ca and Sr/Ca ratios. Proceedings of 3rd International Marine Science Symposium: Coral Climatology by Annual Bands. Japan Marine Science Foundation, Tokyo, pp 50–56

  • Mitsuguchi T, Uchida T, Matsumoto E, Isdale PJ, Kawana T (2001) Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: Implications for carbonate geochemistry. Geochim Cosmochim Acta 65:2865–2874

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Uchida T (2003) Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate. Coral Reefs 22:381–388

    Article  Google Scholar 

  • Mitsuguchi T, Kitagawa H, Matsumoto E, Shibata Y, Yoneda M, Kobayashi T, Uchida T, Ahagon N (2004) High-resolution 14C analyses of annually-banded coral skeletons from Ishigaki Island, Japan: implications for oceanography. Nuclear Instruments and Methods in Physics Research B 223–224:455–459

    Article  Google Scholar 

  • Mitsuguchi T, Uchida T, Matsumoto E (2010) Na/Ca variability in coral skeletons. Geochem J 44:261–273

    CAS  Google Scholar 

  • Okai T, Suzuki A, Kawahata H, Terashima S, Imai N (2002) Preparation of a new Geological Survey of Japan geochemical reference material: coral JCp–1. Geostandards Newsletter 26:95–99

    Article  CAS  Google Scholar 

  • Oomori T, Kaneshima K, Nakamura Y, Kitano Y (1982) Seasonal variation of minor elements in coral skeletons. Galaxea 1:77–86

    CAS  Google Scholar 

  • Pingitore NE Jr, Meitzner G, Love KM (1995) Identification of sulfate in natural carbonates by X-ray absorption spectroscopy. Geochim Cosmochim Acta 59:2477–2483

    Article  CAS  Google Scholar 

  • Pingitore NE, Villalobos J, Cruz-Jimenez G, Wellington GM (2001) Incorporation of potassium in scleractinian coral aragonite: preliminary X-ray absorption spectroscopy. American Geophysical Union 2001 Spring Meeting Abstract #V41B–04

  • Pytkowicz RM, Hawley JE (1974) Bicarbonate and carbonate ion-pairs and a model of seawater at 25 °C. Limnol Oceanogr 19:223–234

    Article  Google Scholar 

  • Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17:1062. doi:10.1029/2000PA000528

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pagès C, Meibom A, Mostefaoui S, Mortlock R, Fairbanks R, Allemand D (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta 71:354–362

    Article  CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    CAS  Google Scholar 

  • Sinclair DJ (2005a) Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization. Geochim Cosmochim Acta 69:3265–3284

    Article  CAS  Google Scholar 

  • Sinclair DJ (2005b) Non-river flood barium signals in the skeletons of corals from coastal Queensland, Australia. Earth Planet Sci Lett 237:354–369

    Article  CAS  Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP–MS. Geochim Cosmochim Acta 62:1889–1901

    Article  CAS  Google Scholar 

  • Sinclair DJ, Williams B, Risk M (2006) A biological origin for climate signals in corals—Trace element “vital effects” are ubiquitous in scleractinian coral skeletons. Geophys Res Lett 33:L17707. doi:10.1029/2006GL027183

    Article  Google Scholar 

  • Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–406

    Article  PubMed  CAS  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48:497–530

    Google Scholar 

  • Tokuyama A, Kitano Y, Kaneshima K (1972) Geochemical behavior of chemical species in the processes of limestone formation: Part I. Chemical composition of corals and limestones in the Ryukyu Islands. Geochem J 6:83–92

    Article  CAS  Google Scholar 

  • Tsunogai S, Yamahata H, Kudo S, Saito O (1973) Calcium in the Pacific Ocean. Deep-Sea Res 20:717–726

    CAS  Google Scholar 

  • Uchida T, Kojima I, Iida C (1980) Determination of metals in small samples by atomic absorption and emission spectrometry with discrete nebulization. Anal Chim Acta 116:205–210

    Article  CAS  Google Scholar 

  • Watanabe T, Winter A, Oba T (2001a) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol 173:21–35

    Article  CAS  Google Scholar 

  • Watanabe T, Minagawa M, Oba T, Winter A (2001b) Pretreatment of coral aragonite for Mg and Sr analysis: Implications for coral thermometers. Geochem J 35:265–269

    Article  CAS  Google Scholar 

  • Wei G, Sun M, Li X, Nie B (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr Palaeoclimatol Palaeoecol 162:59–74

    Article  Google Scholar 

  • White AF (1977) Sodium and potassium coprecipitation in aragonite. Geochim Cosmochim Acta 41:613–625

    Article  CAS  Google Scholar 

  • Yoshioka S, Ohde S, Oomori T, Kitano Y (1985) Dissolution of magnesium and strontium during the transformation of coral aragonite to calcite in aqueous solution. Galaxea 4:99–111

    CAS  Google Scholar 

  • Yoshioka S, Ohde S, Kitano Y, Kanamori N (1986) Behavior of magnesium and strontium during the transformation of coral aragonite to calcite in aquatic environments. Mar Chem 18:35–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Peter J. Isdale and Bruce Parker, both of the Australian Institute of Marine Science, Eiji Matsumoto and Osamu Abe, both of Nagoya University, and Toshio Kawana of University of the Ryukyus for collecting the coral samples used in this study; Tetsuo Uchida of Nagoya Institute of Technology for his kind support in the Na measurements by AAF–AES; and Hiroyuki Kitagawa of Nagoya University for preparations for 14C age determination of the fossil coral sample. We also thank anonymous reviewers for their helpful and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mitsuguchi.

Additional information

Communicated by Geology Editor Dr. Bernhard Riegl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsuguchi, T., Kawakami, T. Potassium and other minor elements in Porites corals: implications for skeletal geochemistry and paleoenvironmental reconstruction. Coral Reefs 31, 671–681 (2012). https://doi.org/10.1007/s00338-012-0902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0902-3

Keywords

Navigation