Ecological surveys at the ojo sites indicate that certain scleractinian coral species can grow in undersaturated conditions. Thus, these species may be more tolerant of low-pH and low aragonite saturation conditions, and hence more resistant than other species when exposed to changing oceanic pH and carbonate saturation. However, the number of species that can survive at these low saturation conditions is limited compared with the species richness of the surrounding area. These findings are generally consistent with those of Fabricius et al. (2011) from CO2 vents in Papua New Guinea, where the diversity and abundance of structurally complex corals was reduced threefold at low pH, yet Porites corals were still found at pH below 7.7 and aragonite saturation of 2.9. At Puerto Morelos, the conditions are more extreme as the water is often undersaturated or has much lower saturation values than 2.9, yet Porites astreoides and Siderastrea
radians corals are still abundant. Therefore, the Puerto Morelos site demonstrates that certain coral species may tolerate extreme acidification events and still maintain their ability to calcify. While we did not measure calcification rates during this study, we note that the ojos are part of a complex and elaborate underground conduit system that has developed over millennia in this karstic terrain. The seepage at these sites has therefore been continuous for an extended period of time compared with the average age of coral colonies. Thus, the corals settled, calcified, and the colonies grew within the plume of low-pH groundwater discharge. This is different than the more ephemeral volcanic vent sites, and therefore the ojos represent areas where the ecosystem had ample time to adapt and evolve exposed to low-pH conditions.
Although the coral species found at the ojo sites (S. radians, P. astreoides, and P. divaricata) all occur on reef structures, they are rarely major contributors to the framework of the Meso-American Barrier Reef: thus, while their presence is encouraging when considering the future of these specific scleractinian species, there are severe implications for the future of reef ecosystems and the many organisms that rely on structurally complex corals to build the reef framework. Specifically, our data suggest that as seawater saturation nears 2.5, today’s larger, dominant, framework-building corals of the Meso-American Reef (e.g., Acropora and Montastraea), may be replaced by smaller, patchily distributed colonies of only a few species.
While only a limited number of coral species live in areas exposed to the low-pH groundwater, their presence in undersaturated waters raises interesting questions. Physiological and/or genetic adaptations allowing corals and other calcifying organisms to persist under low saturation, low-pH conditions are largely unknown and are currently under investigation. One suggestion is that the energy allocated to calcification in such conditions may come at the expense of other metabolic activities and result in lower growth rates (Atkinson et al. 1995; Jokiel et al. 2008; Cohen and Holcomb 2009); another idea is that high nutrient concentrations could provide energetic resources that may offset deleterious effects of high CO2 (Jokiel et al. 2008; Cohen and Holcomb 2009). Laboratory experiments with Astrangia, Occulina, Porites, Montipora, and Favia sp. show that while calcification rates were reduced under low saturation (Ω ~ 1.5) conditions, the addition of inorganic nutrients or food under the same low saturation conditions enabled the corals to maintain 75–100% of their calcification rates (Langdon and Atkinson 2005; Ries et al. 2009; Cohen and Holcomb 2009; Holcomb et al. 2009). These ideas are consistent with our field observations that certain coral species may survive in undersaturated waters when nutrient concentrations are high (ojo waters had 2–10 times higher nutrient concentrations than surrounding water). The interplay of nutrient availability, low saturation conditions, and calcification in corals should be further investigated under natural conditions as this may be important for predicting future coral distribution and survival.
Another potential explanation for the survival of some coral species in the immediate vicinity of the ojos is that daily or seasonal fluctuations in discharge may periodically expose the corals to ambient waters with high saturation levels. Our samples were taken on three field trips over a 15-month period and were monitored continuously over 2 months, and pH levels were nearly always low at ojo sites, where the three tolerant scleractinian species were present (Hofmann et al. 2011). However, it is possible that the groundwater discharge fluxes do vary over time scales we have not captured, and that these corals experience intermittent relief from low-pH, low aragonite saturation waters. Semi-permanent sensors installed over a whole year will enable us to determine the consistency of saturation levels around the corals. If fluctuations in discharge do impact saturation conditions, we will be able to estimate possible response thresholds for the coral species living nearest to the ojo centers (e.g., minimum duration or fraction of time spent in supersaturated conditions required for corals to survive).
In natural environments, it is not possible to entirely exclude the impact of other variables, and for the ojos specifically the impact of lower salinity, on the observed coral distribution. However, previous studies suggest that many species are able to withstand osmotic stress with limited harmful effects when exposed to lower than ambient salinities (Coles and Jokiel 1978; Hoegh-Guldberg and Smith 1989; Xiubau et al. 2009). In fact, Coles and Jokiel (1978) showed that salinities as low as 25 ppt in themselves were insufficient to have any negative impacts on Montipora sp., a coral found in abundance along the Puerto Morelos coast. Here, we only present data from ojos with salinities consistently above 25 ppt. As Montipora and many other corals were commonly observed at the control sites, yet not within the low saturation zones, this suggests that salinity itself is insufficient to explain the observed distribution patterns. While the impact of multiple stressors (i.e., high temperature, light, and/or sedimentation) can compound the salinity factor and cause negative responses across species (Coles and Jokiel 1978; Hoegh-Guldberg and Smith 1989; Lirman and Manzello 2009; Xiubau et al. 2009), these discharge sites actually experience lower than ambient temperatures while light and sedimentation levels remain the same at the ojos and at the control sites. Therefore, by only including data from ojos that have salinities consistently higher than 25 ppt, we have attempted to control for, if not entirely negate, the impact of salinity on coral distribution found at Puerto Morelos.
This work illustrates that while the effects of ocean acidification on coral reefs and other calcifying organisms may be severe, the impacts will differ considerably across various species and ecosystems and some calcifying corals given the right condition will continue to grow and calcify. It is possible, therefore, that the ocean acidification scenario will result in an ecosystem shift along the Mesoamerican Barrier Reef, in which today’s frame-building colonies are replaced by more tolerant species such as Porites and Siderastrea. The decrease in species richness observed when Ωarag < 2.5 indicates that an acidified ocean may change the composition and species diversity of reefs, which has the potential to impact the ecosystem services they provide. This work gives a first insight as to the highly adaptive nature of certain reef species; however, it also calls for the future need to increase protection in areas that might serve as ecological refuges for corals that may have adapted to survival in low-pH, low saturation waters.