Skip to main content

Advertisement

Log in

Geochemical signature of land-based activities in Caribbean coral surface samples

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Anthropogenic threats, such as increased sedimentation, agrochemical run-off, coastal development, tourism, and overfishing, are of great concern to the Mesoamerican Caribbean Reef System (MACR). Trace metals in corals can be used to quantify and monitor the impact of these land-based activities. Surface coral samples from the MACR were investigated for trace metal signatures resulting from relative differences in water quality. Samples were analyzed at three spatial scales (colony, reef, and regional) as part of a hierarchical multi-scale survey. A primary goal of the paper is to elucidate the extrapolation of information between fine-scale variation at the colony or reef scale and broad-scale patterns at the regional scale. Of the 18 metals measured, five yielded statistical differences at the colony and/or reef scale, suggesting fine-scale spatial heterogeneity not conducive to regional interpretation. Five metals yielded a statistical difference at the regional scale with an absence of a statistical difference at either the colony or reef scale. These metals are barium (Ba), manganese (Mn), chromium (Cr), copper (Cu), and antimony (Sb). The most robust geochemical indicators of land-based activities are coral Ba and Mn concentrations, which are elevated in samples from the southern region of the Gulf of Honduras relative to those from the Turneffe Islands. These findings are consistent with the occurrence of the most significant watersheds in the MACR from southern Belize to Honduras, which contribute sediment-laden freshwater to the coastal zone primarily as a result of human alteration to the landscape (e.g., deforestation and agricultural practices). Elevated levels of Cu and Sb were found in samples from Honduras and may be linked to industrial shipping activities where copper–antimony additives are commonly used in antifouling paints. Results from this study strongly demonstrate the impact of terrestrial runoff and anthropogenic activities on coastal water quality in the MACR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi T, Hashimoto Y, Fu F-F, Tsuno H, Tao H, Nakano Y (2004) Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies. Geochim Cosmochim Acta 68:2265–2273

    Article  CAS  Google Scholar 

  • Allison N, Tudhope AW, Fallick AE (1996) Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs 15:43–57

    Google Scholar 

  • Andrefouet S, Mumby PJ, McField M, Hu C, Muller-Karger FE (2002) Revisiting coral reef connectivity. Coral Reefs 21:43–48

    Google Scholar 

  • Arrivillaga A, Garcia MA (2004) Status of coral reefs of the Mesoamerican Barrier Reef systems project region, and reef of El Salvador, Nicaragua and the Pacific Coasts of Mesoamerica. In: Wilkinson C (ed) Status of coral reefs of the world: 2004. Australia Institute of Marine Science, Townsville, pp 473–491

    Google Scholar 

  • Barnes DJ, Taylor RB, Lough JM (1995) On the inclusion of trace materials into massive coral skeletons: Part II. Distortions in skeletal records of annual climate cycles due to growth processes. J Exp Mar Biol Ecol 194:251–275

    Article  CAS  Google Scholar 

  • Bastidas C, Garcia E (1999) Metal content on the reef coral Porites astreoides: an evaluation of river influence and 35 years of chronology. Mar Pollut Bull 38:899–907

    Article  CAS  Google Scholar 

  • Bourke L, Selig E, Spalding M (2002) Reefs at risk in Southeast Asia. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Brown BE, Tudhope AW, Letissier MDA, Scoffin TP (1991) A novel mechanism for iron incorporation into coral skeletons. Coral Reefs 10:211–215

    Article  Google Scholar 

  • Bryant DG, Burke L, McManus J, Spalding M (1998) Reefs at risk: a map-based indicator of threats to the world’s coral reefs. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Burke L, Sugg Z (2006) Hydrologic modeling of watersheds discharging adjacent to the Mesoamerican Reef. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Chérubin LM, Kuchinke CP, Paris CB (2008) Ocean circulation and terrestrial runoff dynamics in the Mesoamerican region from spectral optimization of SeaWiFS data and a high resolution simulation. Coral Reefs [doi:10.1007/s00338-007-0348-1]

  • Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • David CP (2003) Heavy metal concentrations in growth bands of corals: a record of mine tailings input through time (Marinduque Island, Philippines). Mar Pollut Bull 46:187–196

    Article  PubMed  CAS  Google Scholar 

  • de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269:1247–1249

    Article  PubMed  Google Scholar 

  • Delaney ML, Linn LJ, Druffel ERM (1993) Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands. Geochim Cosmochim Acta 57:347–354

    Article  CAS  Google Scholar 

  • Doan DB (1997) The mineral industry of Honduras. Minerals Yearbook Vol III-Area Reports, International United States Geological Survey, Reston

  • Dodge RE, Vaisnys JR (1977) Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. J Mar Res 35:715–730

    Google Scholar 

  • Dodge RE, Jickells TD, Knap AH, Boyd S, Bak RPM (1984) Reef-building coral skeletons as chemical pollution (phosphorus) indicators. Mar Pollut Bull 15:178–187

    Article  CAS  Google Scholar 

  • Druffel EM, Suess HE (1983) On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. J Geophys Res C 88:1271–1280

    Article  CAS  Google Scholar 

  • Esslemont G (1999) Heavy metals in corals from Heron Island and Darwin Harbour, Australia. Mar Pollut Bull 38:1051–1054

    Article  CAS  Google Scholar 

  • Fabricius KE, Wolanski E (2000) Rapid smothering of coral reef organisms by muddy marine snow. Estuar Coast Shelf Sci 50:115–120

    Article  Google Scholar 

  • Fairbanks RG, Dodge RE (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastraea annularis. Geochim Cosmochim Acta 43:1009–1020

    Article  CAS  Google Scholar 

  • Falkenmark M (1989) Comparative hydrology: an ecological approach to land and water resources. UNESCO, Paris

    Google Scholar 

  • Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66:45–62

    Article  CAS  Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  Google Scholar 

  • Finch AA, Allison N (2007) Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine 71:539–552

    Article  CAS  Google Scholar 

  • Fleitmann D, Dunbar RB, McCulloch M, Mudelsee M, Vuille M, McClanahan TR, Cole JE, Eggins S (2007) East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophys Res Lett 34 [doi:10.1029/2006GL028525]

  • Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70:4617–4463

    Article  CAS  Google Scholar 

  • Gibson J, McField M, Wells S (1998) Coral reef management in Belize: an approach through integrated coastal zone management. Ocean Coast Manage 39:229–244

    Article  Google Scholar 

  • Goodkin NF, Hughen KA, Cohen AL, Smith SR (2005) Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca. Paleoceanography 20 [doi:10.1029/2005PA00114]

  • Goodkin, NF, Hughen, KA, Cohen, A L (2007) A Multi-Coral Calibration Method to Approximate a Universal Equation relating Sr/Ca and Growth Rate to Sea Surface Temperature. Paleoceanography [doi: 2006PA001312]

  • Guilderson TP, Cole JE, Southon JR (2005) Pre-bomb Δ14C variability and the Suess effect in Cariaco Basin surface waters as recorded in hermatypic corals. Radiocarbon 47:57–65

    CAS  Google Scholar 

  • Guzman HM, Jimenez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean coast of Central-America (Costa Rica and Panama). Mar Pollut Bull 24:554–561

    Article  CAS  Google Scholar 

  • Guzman HM, Jarvis KE (1996) Vanadium century record from Caribbean reef corals: a tracer of oil pollution in Panama. Ambio 25:523–526

    Google Scholar 

  • Hanna RG, Muir GL (1990) Red-Sea corals of trace metal pollution. Environ Monit Assess 14:211–222

    Article  CAS  Google Scholar 

  • Harborne AR, Afzal DC, Andrews MJ (2001) Honduras: Caribbean coast. Mar Pollut Bull 42:1221–1235

    Article  PubMed  CAS  Google Scholar 

  • Hatcher BG (1997) Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16:S77–S91

    Article  Google Scholar 

  • Hendy EJ, Gagan MK, Lough JM, McCulloch M, deMenocal PB (2007) Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals. Paeloceanography 22 [doi:10.1029/2007PA001462]

  • Heyman WD, Kjerfve B (1999) Hydrological and oceanographic considerations for integrated coastal zone management in southern Belize. Environ Manage 24:229–245

    Article  PubMed  Google Scholar 

  • Heyman WD, Kjerfve B (2001) The Gulf of Honduras. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America ecological studies. Springer-Verlag, Berlin, pp 17–32

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeleton deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • Kammerbauer J, Ardon C (1999) Land use dynamics and landscape change pattern in a typical watershed in the hillside region of central Honduras. Agric Ecosyst Environ 75:93–100

    Article  Google Scholar 

  • Lapointe BE (2004) Phosphorus-rich waters at Glovers Reef, Belize? Mar Pollut Bull 48:193–195

    Article  PubMed  CAS  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1993) Modification of benthic community structure by natural eutrophication: the Belize Barrier Reef. Proc 7th Int Coral Reef Symp 1:323–334

    Google Scholar 

  • Lear CH, Rosenthal Y, Slowey N (2002) Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochim Cosmochim Acta 66:3375–3387

    Article  CAS  Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Stanford, pp 278–292

    Google Scholar 

  • Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18:13–27

    Article  Google Scholar 

  • Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204:115–143

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1990) Measurement of density in slices of coral skeleton: effect of desitometer beam diameter. J Exp Mar Biol Ecol 143:91–99

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Mann KH, Lazier JRN (1996) Dynamics of marine ecosystems. Blackwell Science, Oxford

    Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280

    Article  CAS  Google Scholar 

  • McClanahan TR, Aronson RB, Precht WF, Muthiga NA (1999) Fleshy algae dominate remote coral reefs of Belize. Coral Reefs 18:61–62

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O disequilibrium in biological carbonates: I. patterns. Geochim Cosmochim Acta 53:151–162

    Article  CAS  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  PubMed  CAS  Google Scholar 

  • McRoy CP (1983) Nutrient cycles in Caribbean seagrass ecosystems. In: Ogden JC, Gladfelter EH (eds) Coral reefs, seagrass beds and mangroves: their interaction in the coastal zones of the Caribbean. UNESCO Reports in Marine Science, Montevideo

    Google Scholar 

  • Merrill TL (1995) Honduras: a country study. Area Handbook Series 3rd Edn. Federal Research Division Defense Department, Army. Library of Congress, Washington D.C.

  • Montaggioni LF, Le Cornec F, Correge T, Cabioch G (2006) Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 237:436–455

    Article  Google Scholar 

  • Norse EA (ed) (1993) Global marine biological diversity—a strategy for building conservation into decision-making. Island Press, Washington, D.C.

    Google Scholar 

  • Ogden JC, Ogden NB (1998) Reconnaissance survey of the coral reefs and associated ecosystems of Cayos Cochinos, Honduras. Rev Biol Trop 46:67–74

    Google Scholar 

  • Paris CB, Chérubin LM (2008) River-reef connectivity in the Meso-American Region. Coral Reefs [doi:10.1007/s00338-008-0396-1]

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Ramos AA, Inoue Y, Ohde S (2004) Metal contents in Porites corals: anthropogenic input of river run-off into a coral reef from an urbanized area, Okinawa. Mar Pollut Bull 48:281–294

    Article  PubMed  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Harrison PL (2005) The effect of selected trace metals on the fertilization success of several scleractinian coral species. Coral Reefs 24:524–534

    Article  Google Scholar 

  • Reuer MK, Boyle EA, Cole JE (2003) A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet Sci Lett 210:437–452

    CAS  Google Scholar 

  • Rogers CS (1990) Response of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Rosenthal Y, Field MP, Sherrell RM (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71:3248–3253

    Article  CAS  Google Scholar 

  • Runnalls LA, Coleman ML (2003) Record of natural and anthropogenic changes in reef environments (Barbados West Indies) using laser ablation ICP-MS and sclerochronology on coral cores. Coral Reefs 22:416–426

    Article  Google Scholar 

  • Saphier AD, Hoffmann TC (2005) Forecasting models to quantify three anthropogenic stresses on coral reefs from marine recreation: anchor damage, diver contact and copper emission from antifouling paint. Mar Pollut Bull 51:590–598

    Article  PubMed  CAS  Google Scholar 

  • Shen GT, Boyle EA (1988) Determination of lead, cadmium, and other trace metals in annually-banded corals. Chem Geol 67:47–62

    Article  CAS  Google Scholar 

  • Shen GT, Campbell TD, Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1991) Paleochemistry of manganese in corals from the Galapagos Islands. Coral Reefs 10:91–100

    Article  Google Scholar 

  • Shen GT, Linn LJ, Campbell TM, Cole JE, Fairbanks RG (1992) A chemical indicator of trade wind reversal in corals from the western tropical Pacific. J Geophys Res 97:12689–12697

    Article  CAS  Google Scholar 

  • Sheng J, Wang L, Andréfouët S, Hu C, Hatcher BG, Muller-Karger FE, Kjerfve B, Heyman WD, Yang B (2007) Upper ocean response of the Mesoamerican Barrier Reef System to Hurricane Mitch and coastal freshwater inputs: a study using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data and a nested-grid ocean circulation model. J Geophys Res 112, C07016, [doi:10.1029/2006JC003900]

  • Smith JM, Quinn TM, Helmle KP, Halley RB (2006) Reproducibility of geochemical and climatic signals in the Atlantic coral Montastraea faveolata. Paleoceanography 21 [doi:10.1029/2005PA001187]

  • Suzuki A, Hibino K, Iwase A, Kawahata H (2005) Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: temperature-controlled experiments. Geochim Cosmochim Acta 69:4453–4462

    Article  CAS  Google Scholar 

  • Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743–766

    Article  CAS  Google Scholar 

  • Tang LQ, Sheng JY, Hatcher BG, Sale PF (2006) Numerical study of circulation, dispersion, and hydrodynamic connectivity of surface waters on the Belize shelf. J Geophys Res C 111 [doi:10.1029/2005JC002930]

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Reynaud ST, Phanie CuifJP, Dauphin Y (2006) Variation of geochemical signals in coral skeletons: environmental changes or biological processes? Paleontol Res 10:359–374

    Article  Google Scholar 

  • Wu J, David J (2002) A spatially-explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model 153:7–26

    Article  Google Scholar 

  • Young MA (1993) Supplementing tests of statistical significance: variation accounted for. J Speech Lang Hear Res 36:644–656

    CAS  Google Scholar 

  • Zacherl DC, Manriquez PH, Paradis G, Day RW, Castilla JC, Warner RR, Lea DW, Gaines SD (2003) Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories. Mar Ecol Prog Ser 248:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Summit Foundation and a postdoctoral scholarship to N.G. Prouty from the Woods Hole Oceanographic Institution. We would like to thank S. Birdwhistle for analytical assistance and M. McField for guidance during this study. We thank the editorial staff and two anonymous reviewers for their valuable comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Prouty.

Additional information

Communicated by Geology Editor Bernhard Riegl

Electronic supplementary material

Appendix

Appendix

Average metal/Ca ratios and their respective standard deviation (σ) and standard error (SE) from the locations reported in this hierarchical multi-scale survey (Fig. 2). The most recent 5 years of each individual core were used to define a representative surface sample. The average trace metal ratio refers to the arithmetic mean of measurements over those 5 years

Site:

Turneffe

Cayos Cochinos

Parameter

Mean (n = 20)

σ (±)

SE (±)

Mean (n = 18)

σ (±)

SE (±)

Al/Ca

1.70E−01

2.93E−01

6.55E−02

1.67E−01

2.26E−01

5.33E−02

B/Ca

6.06E−01

3.09E−02

6.91E−03

6.44E−01

3.12E−02

7.35E−03

Ba/Ca

5.35E−03

1.48E−04

3.31E−05

6.22E−03

3.47E−04

8.18E−05

Cd/Ca

1.62E−03

2.43E−03

5.43E−04

1.61E−03

3.16E−03

7.45E−04

Co/Ca

7.09E−05

2.12E−04

4.74E−05

8.52E−05

1.74E−04

4.10E−05

Cr/Ca

1.21E−04

7.32E−05

1.64E−05

1.43E−04

6.63E−05

1.56E−05

Cu/Ca

2.61E−04

2.05E−04

4.58E−05

1.29E−03

1.97E−03

4.64E−04

Fe/Ca

4.33E−03

3.66E−03

8.18E−04

1.54E−02

2.80E−02

6.60E−03

Mg/Ca

4.30E+00

2.27E−01

5.08E−02

4.44E+00

2.43E−01

5.73E−02

Mn/Ca

4.52E−04

3.00E−04

6.71E−05

7.49E−04

2.74E−04

6.46E−05

Ni/Ca

1.11E−01

3.02E−01

6.75E−02

4.31E−02

7.65E−02

1.80E−02

Pb/Ca

6.96E−05

1.10E−04

2.46E−05

1.80E−04

2.01E−04

4.74E−05

Sb/Ca

4.05E−05

5.05E−05

1.13E−05

1.33E−04

2.38E−04

5.61E−05

Sn/Ca

1.52E−03

7.90E−04

1.77E−04

1.80E−03

1.73E−03

4.08E−04

Sr/Ca

8.92E+00

4.01E−02

8.97E−03

8.96E+00

6.54E−02

1.54E−02

U/Ca

1.23E−03

6.22E−05

1.39E−05

1.27E−03

4.82E−05

1.14E−05

V/Ca

1.42E−04

1.66E−05

3.71E−06

1.55E−04

2.00E−05

4.71E−06

Zn/Ca

2.50E−03

3.21E−03

7.18E−04

4.81E−03

5.58E−03

1.32E−03

Site:

Utila

Frank’s Cay

Parameter

Mean (n = 18)

σ (±)

SE (±)

Mean (n = 30)

σ (±)

SE (±)

Al/Ca

1.54E−01

1.68E−01

3.96E−02

1.30E−01

1.37E−01

2.50E−02

B/Ca

6.29E−01

2.74E−02

6.46E−03

6.23E−01

4.69E−02

8.56E−03

Ba/Ca

5.92E−03

2.75E−04

6.48E−05

6.38E−03

3.77E−04

6.88E−05

Cd/Ca

1.04E−03

1.05E−03

2.47E−04

3.03E−03

3.80E−03

6.94E−04

Co/Ca

7.52E−05

1.46E−04

3.44E−05

1.18E−04

1.25E−04

2.28E−05

Cr/Ca

2.45E−04

2.20E−04

5.19E−05

2.55E−04

3.17E−04

5.79E−05

Cu/Ca

6.86E−04

6.82E−04

1.61E−04

7.63E−04

1.07E−03

1.95E−04

Fe/Ca

1.57E−02

2.36E−02

5.56E−03

1.01E−02

1.45E−02

2.65E−03

Mg/Ca

4.29E+00

2.81E−01

6.62E−02

4.37E+00

3.42E−01

6.24E−02

Mn/Ca

8.93E−04

4.86E−04

1.15E−04

9.34E−04

5.28E−04

9.64E−05

Ni/Ca

3.87E−01

1.11E+00

2.62E−01

5.60E−02

1.82E−01

3.32E−02

Pb/Ca

2.14E−04

2.19E−04

5.16E−05

5.81E−04

1.29E−03

2.36E−04

Sb/Ca

7.29E−05

1.04E−04

2.45E−05

6.76E−05

1.17E−04

2.14E−05

Sn/Ca

2.30E−03

1.64E−03

3.87E−04

2.55E−03

1.37E−03

2.50E−04

Sr/Ca

8.92E+00

5.48E−02

1.29E−02

8.89E+00

8.37E−02

1.53E−02

U/Ca

1.25E−03

3.80E−05

8.96E−06

1.22E−03

5.96E−05

1.09E−05

V/Ca

1.50E−04

3.31E−05

7.80E−06

1.50E−04

4.33E−05

7.91E−06

Zn/Ca

6.03E−03

7.97E−03

1.88E−03

4.09E−03

7.13E−03

1.30E−03

Site:

Ragged Cay

Seal Cay

Parameter

Mean (n = 6)

σ (±)

SE (±)

Mean (n = 6)

σ (±)

SE (±)

Al/Ca

8.34E−02

1.37E−01

5.59E−02

3.89E−01

4.06E−01

1.66E−01

B/Ca

6.05E−01

4.17E−02

1.70E−02

5.82E−01

9.09E−03

3.71E−03

Ba/Ca

6.56E−03

4.62E−04

1.89E−04

6.76E−03

9.36E−04

3.82E−04

Cd/Ca

2.89E−03

2.36E−03

9.63E−04

9.14E−04

2.42E−04

9.88E−05

Co/Ca

2.22E−05

1.82E−05

7.43E−06

3.63E−05

2.78E−05

1.13E−05

Cr/Ca

8.12E−05

2.16E−05

8.82E−06

2.73E−04

1.55E−04

6.33E−05

Cu/Ca

1.37E−04

7.43E−05

3.03E−05

1.71E−03

3.00E−03

1.22E−03

Fe/Ca

3.25E−03

2.33E−03

9.51E−04

1.24E−02

5.84E−03

2.38E−03

Mg/Ca

4.01E+00

2.75E−01

1.12E−01

4.41E+00

1.14E−01

4.65E−02

Mn/Ca

6.76E−04

1.43E−04

5.84E−05

1.16E−03

3.46E−04

1.41E−04

Ni/Ca

9.58E−02

2.10E−01

8.57E−02

2.30E−02

4.86E−02

1.98E−02

Pb/Ca

4.15E−05

5.20E−05

2.12E−05

6.25E−04

6.30E−04

2.57E−04

Sb/Ca

3.99E−05

2.95E−05

1.20E−05

3.29E−05

2.05E−05

8.37E−06

Sn/Ca

1.19E−03

1.91E−04

7.80E−05

3.83E−03

9.96E−04

4.07E−04

Sr/Ca

8.92E+00

4.75E−02

1.94E−02

8.89E+00

4.09E−02

1.67E−02

U/Ca

1.28E−03

5.23E−05

2.14E−05

1.21E−03

1.84E−05

7.51E−06

V/Ca

1.50E−04

1.54E−05

6.29E−06

1.26E−04

1.55E−05

6.33E−06

Zn/Ca

1.95E−03

1.29E−03

5.27E−04

8.54E−03

1.01E−02

4.12E−03

Site:

Tom Owen’s Cay

   

Parameter

Mean (n = 6)

σ (±)

SE (±)

   

Al/Ca

4.17E−01

6.45E−01

2.63E−01

   

B/Ca

6.34E−01

3.91E−02

1.60E−02

   

Ba/Ca

6.70E−03

6.95E−04

2.84E−04

   

Cd/Ca

1.13E−03

3.84E−04

1.57E−04

   

Co/Ca

2.30E−05

2.43E−05

9.92E−06

   

Cr/Ca

4.12E−04

5.48E−04

2.24E−04

   

Cu/Ca

1.62E−03

2.82E−03

1.15E−03

   

Fe/Ca

2.56E−02

3.00E−02

1.22E−02

   

Mg/Ca

3.77E+00

2.06E−01

8.41E−02

   

Mn/Ca

1.06E−03

3.88E−04

1.58E−04

   

Ni/Ca

5.12E−03

4.58E−03

1.87E−03

   

Pb/Ca

3.42E−04

3.09E−04

1.26E−04

   

Sb/Ca

3.08E−05

1.09E−05

4.45E−06

   

Sn/Ca

6.50E−03

1.29E−03

5.27E−04

   

Sr/Ca

8.92E+00

2.61E−02

1.07E−02

   

U/Ca

1.28E−03

1.32E−05

5.39E−06

   

V/Ca

1.47E−04

1.75E−05

7.14E−06

   

Zn/Ca

4.02E−03

4.96E−03

2.02E−03

   

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prouty, N.G., Hughen, K.A. & Carilli, J. Geochemical signature of land-based activities in Caribbean coral surface samples. Coral Reefs 27, 727–742 (2008). https://doi.org/10.1007/s00338-008-0413-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-008-0413-4

Keywords

Navigation