Skip to main content
Log in

Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Laboratory experiments were designed to estimate the ingestion rates of the scleractinian coral Stylophora pistillata under varying prey concentrations and feeding regimes and to assess the effect of feeding on the tissue and skeletal growth. Six sets of corals were incubated under two light (80 and 300 µmol photons m−2 s−1) and three feeding levels (none, fed twice, and fed six times per week) using freshly collected zooplankton. Results showed that the number of prey ingested was proportional to prey density, and no saturation of feeding capability was reached. Capture rates varied between 0.5 and 8 prey items 200 polyp−1 h−1. Corals starved for several days ingested more plankton than did fed corals. Fed colonies exhibited significantly higher levels of protein, chlorophyll a, and chlorophyll c 2 per unit surface area than starved colonies. Feeding had a strong effect on tissue growth, increasing it by two to eight times. Calcification rates were also 30% higher in fed than in starved corals. Even moderate levels of feeding enhanced both tissue and skeletal growth, although the processes involved in this enhancement remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. A
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterization and effect of light and nutritional status. J Comp Physiol B 163:355–362

    CAS  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Anthony KRN, Fabricius K (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    PubMed  Google Scholar 

  • Ayukai T (1991) Standing stock of microzooplankton on coral reefs: a preliminary study. J Plankton Res 4:895–899

    Google Scholar 

  • Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–147

    Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108

    Google Scholar 

  • Battey JF, Patton JS (1986) Glycerol translocation in Condylactis gigantea. Mar Biol 95:37–46

    Google Scholar 

  • Beers JR (1966) Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol Oceanogr 11:520–528

    CAS  Google Scholar 

  • Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136

    Article  Google Scholar 

  • Bythell JC (1988) A total nitrogen and carbon budget for the Elkhorn coral Acropora palmata. In: Proc 6th Int Coral Reef Symp, Townsville, Australia, pp 535–540

  • Clayton WS, Lasker HR (1982) Effects of light and dark treatments on feeding by the reef coral Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 63:269–279

    Google Scholar 

  • Clayton WS, Lasker HR (1984) Host feeding regime and zooxanthellal photosynthesis in the anemone, Aiptasia pallida (Verrill). Biol Bull 167:590–600

    CAS  Google Scholar 

  • Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Progr Ser 115:257–270

    Google Scholar 

  • Coma R, Ribes M, Orejas C, Gili JM (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18:141–145

    Article  Google Scholar 

  • Cook CB, D'Elia CF, Muller-Parker G (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar Biol 98:253–262

    CAS  Google Scholar 

  • Cook CB, Muller-Parker G, Orlandini CD (1994) Ammonium enhancement of dark carbon fixation and nitrogen limitation in zooxanthellae symbiotic with the reef corals Madracis mirabilis and Montastrea annularis. Mar Biol 118:157–165

    CAS  Google Scholar 

  • Di Salvo LH (1971) Ingestion and assimilation of bacteria by two scleractinian coral species. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, pp 129-136

  • Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Dubinsky Z, Stambler N, Ben-Zion M, McCloskey LR, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B 239:231–246

    Google Scholar 

  • Edmunds P, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Google Scholar 

  • Erez J (1978) Vital effect on stable-isotope composition seen in Foraminiferan and coral skeletons. Nature 273:199–202

    CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and bioenergetics of symbiotic coral. Bioscience 34:705–709

    CAS  Google Scholar 

  • Farrant PA, Borowitzka MA, Hinde R, King RJ (1987) Nutrition of the temperate Australian soft coral Capnella gaboensis. Mar Biol 95:575–581

    Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Gattuso JP (1985) Features of depth effects on Stylophora pistillata, an hermatypic coral in the Gulf of Aqaba (Jordan, Red Sea). Proc 5th Int Coral Reef Congr 6:95–100

    Google Scholar 

  • Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321

    Article  Google Scholar 

  • Glynn PW (1973) Ecology of the Caribbean coral reef. The Porites reef-flat biotope: part II. Plankton community with evidence for depletion. Mar Biol 22:1–21

    Google Scholar 

  • Grottoli AG (2000) Stable carbon isotopes in coral skeletons. Oceanography 13:93–97

    Google Scholar 

  • Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41

    Article  Google Scholar 

  • Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pagès C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light and ammonium concentrations. Limnol Oceanogr 47(3):782–790

    Google Scholar 

  • Heffner RA, Butler MJ, Reilly CK (1996) Pseudoreplication revisited. Ecology 77:2558–2562

    Google Scholar 

  • Heidelberg KB, Sebens KP, Purcell JE (1997) Effects of prey escape behavior and water flow on prey capture by the scleractinian coral, Meandrina meandrites. Proc 8th Int Coral Reef Symp Panama City 2:1081–1086

    Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Google Scholar 

  • Hopcroft RR, Roff JC, Lombard D (1998) Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar Biol 130:593–604

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Google Scholar 

  • Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae. I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60:167–178

    CAS  Google Scholar 

  • Jeffrey SW, Humphrey JF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Johannes RE, Tepley L (1974) Examination of feeding on the reef coral Porites lobata in situ using time lapse photography. In: Proc 2nd Int Coral Reef Symp, Great Barrier Reef Committee, October, pp 127–131

  • Johannes S, Coles L, Kuenzel NT (1970) The role of zooplankton in the nutrition of some scleractinian corals. Limnol Oceanogr 15:579–586

    Google Scholar 

  • Johnson AS, Sebens KP (1993) Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinian coral Meandrina meandrites. Mar Ecol Prog Ser 99:99–104

    Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: UNESCO (ed) Coral reefs: research methods. UNESCO, Paris, pp 529–541

  • Klumpp DW, Bayne BL, Hawkins AJS (1992) Nutrition of the giant clam Tridacnas gigas. I. Contribution of filter feeding and photosynthates to respiration and growth. J Exp Mar Biol Ecol 155:105–122

    Google Scholar 

  • Lasker HR (1981) A comparison of the particulate feeding abilities of three species of gorgonian soft corals. Mar Ecol Prog Ser 5:61–67

    Google Scholar 

  • Lasker HR, Syron JA, Clayton WS (1982) The feeding response of Hydra viridis: effects of prey density on capture rates. Biol Bull 162:290–298

    Google Scholar 

  • Lasker HR, Gottfried MD, Coffroth MA (1983) Effects of depth on the feeding capabilities of two octocorals. Mar Biol 73:73–78

    Google Scholar 

  • Lewis JB (1992) Heterotrophy in corals: zooplankton predation by the hydrocoral Millepora complanata. Mar Ecol Prog Ser 90:251–256

    Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    PubMed  Google Scholar 

  • Marsh JA Jr (1970) Primary productivity of reef building calcareous red algae. Ecology 51:255–263

    Google Scholar 

  • Marubini F, Atkinson M (1999) Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Progr Ser 188:117–121

    CAS  Google Scholar 

  • Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720

    CAS  Google Scholar 

  • Muller-Parker G (1985) Effects of feeding regime and irradiance on the photophysiology of the symbiotic sea anemone Aiptasia pulchella. Mar Biol 90:65–74

    Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy fluxes in reef corals. In: Dubinsky Z (ed) Coral reef ecosystems. Elsevier, Amsterdam, pp 75–87

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition. II. δ 15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. BioScience 27:454–460

    Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    CAS  Google Scholar 

  • Ohlhorst SL (1982) Diel migration patterns of demersal reef zooplankton. J Exp Mar Biol Ecol 60:1–15

    Article  Google Scholar 

  • Porter JW (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. In: Cameron AM, Campbell BM, Cribb AB, Endean R, Jell JS, Jones OA, Mather P, Talbot FH (eds) Proc 2nd Int Coral Reef Symp Great Barrier Reef Committee, Brisbane, pp 111–125

  • Ribes M, Coma R, Gili JM (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthellae. Limnol Oceanogr 43:1170-1179

    Google Scholar 

  • Risk MJ, Sammarco PW, Schwarcz HP (1994) Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Mar Ecol Prog Ser 106:121–130

    Google Scholar 

  • Rosenfeld M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2:345–348

    Article  Google Scholar 

  • Sammarco PW, Risk MJ, Schwarcz HP, Heikoop JM (1999) Cross-continental shelf trends in coral δ 15N on the Great Barrier Reef: further consideration of the reef nutrient paradox. Mar Ecol Prog Ser 180:131–138

    CAS  Google Scholar 

  • Sebens KP (1977) Autotrophic and heterotrophic nutrition of coral reef zoanthids. Proc 3rd Int Coral Reef Symp 1:397–406

    Google Scholar 

  • Sebens KP (1987) Coelenterata. In: Vernberg FJ, Pandian TJ (eds) Animal energenetics. Academic Press, New York, pp 55–120

  • Sebens KP (1991) Effects of water flow on coral growth and prey capture. Am Zool 31(5):59A

    Google Scholar 

  • Sebens KP, Koehl MAR (1984) The feeding ecology of two subtidal rock wall zooplanktivores, Alcyonium siderium and Metridium senile. Mar Biol 81:255–274

    Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Google Scholar 

  • Sebens KP, Grace S, Helmuth B, Maney E, Miles J (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites in a field enclosure. Mar Biol 131:347–360

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    PubMed  Google Scholar 

  • Sorokin YI (1973) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18:380–385

    CAS  Google Scholar 

  • Sorokin YI (1991) Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust J Mar Freshwater Res 42:729–741

    Google Scholar 

  • Stambler N, Popper N, Dubinsky Z, Stimson J (1991) Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac Sci 45:299–307

    Google Scholar 

  • Szmant-Froelich A, Pilson MEQ (1984) Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar Biol 81:153–162

    CAS  Google Scholar 

  • Tambutté E, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995). An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Google Scholar 

  • Titlyanov EA (1991) The stable level of coral primary production in a wide light range. Hydrobiology 216/217:383–387

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Tsukahara J, Van Woesik R, Yamazato K (1999) Experimental increases of zooxanthellae density in the coral Stylophora pistillata elucidate adaptive mechanisms for zooxanthellae regulation. Symbiosis 26:347–362

    Google Scholar 

  • Titlyanov EA, Bil' K, Fomina I, Titlyanova T, Leletkin V, Eden N, Malkin A, Dubinsky Z (2000) Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Mar Biol 137:463–472

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J Exp Mar Biol Ecol 257:163–181

    Article  PubMed  Google Scholar 

  • UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. UNESCO Tech Pap Mar Sci 36:1–25

    Google Scholar 

  • Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plankton Res 21:2309–2321

    Article  Google Scholar 

  • Wellington GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320

    Google Scholar 

  • Witting JH (1999) Zooplankton capture and coral growth: the role of heterotrophy in Caribbean reef corals. PhD Diss, Northeastern University, Boston, USA, 285 pp

    Google Scholar 

  • Yamamuro M, Kayanne H, Minagawa M (1995) Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol Oceanogr 40:617–621

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation, Biological Oceanography Program, Grant OCE9811577 to K. Sebens and in part by the Centre Scientifique de Monaco. Thanks are due to Cecile Richard for technical assistance and to Dr. H.R. Lasker for improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ferrier-Pagès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrier-Pagès, C., Witting, J., Tambutté, E. et al. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata . Coral Reefs 22, 229–240 (2003). https://doi.org/10.1007/s00338-003-0312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-003-0312-7

Keywords

Navigation