Skip to main content
Log in

Calcification rates in the lower photic zone and their ecological implications

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

A Correction to this article was published on 25 September 2023

This article has been updated

Abstract

Photosymbiotic corals inhabit depths 0–170 + m and form the foundation of coral reef ecosystems by creating complex habitats with their calcium carbonate skeletons. While well studied in shallow waters, almost nothing is known about their basic biology & ecology at depths > 60 m. Here, we report on the first measurements of skeletal density and coral calcification rates from Leptoseris spp. growing at depths of 70–111 m in Hawaii. These corals have very thin, nonporous, skeletons that are considerably denser (2.7 g cm−3) than most shallow water corals. Their calcification rates (0.042–0.085 g cm−2 yr−1) are the lowest ever reported for a photosymbiotic scleractinian coral and ~ 20–40 times lower than the dominant shallow water corals in Hawaii. Given their colony geometry, calcification rate and tissue biomass productivity (per unit area) are tightly coupled, and a constant calcification rate leads to an increasing radial extension rate with colony size. These growth parameter relationships contrast sharply with hemispheroidal colonies in shallow water. Despite their extremely low calcification rates, these corals are very productive at increasing planar area over time, which is consistent with their phototrophic strategy at depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Álvarez-Noriega M, Baird AH, Dornelas M, Madin JS, Cumbo VR, Connolly SR (2016) Fecundity and the demographic strategies of coral morphologies. Ecology 97:3485–3493

    Article  PubMed  Google Scholar 

  • Atkinson MJ (2011) Biogeochemistry of nutrients. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 199–206

    Chapter  Google Scholar 

  • Babcock RC (1988) Age-structure, survivorship and fecundity in populations of massive corals. In: Proc 6th Int Coral Reef Symp 2:625–633

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167(1):91–108

    Article  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM et al (2010) Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KR, Bak RP, Vermeij MJ, Hoegh-Guldberg O (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlot J, Rouzé H, Barneche DR, Mercière A, Espiau B, Cardini U, Brandl SJ, Casey JM, Pérez-Rosales G, Adjeroud M, Hédouin L, Parravicini V (2022) Scaling up calcification, respiration, and photosynthesis rates of six prominent coral taxa. Ecol Evol 12:e8613. https://doi.org/10.1002/ece3.8613

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper TF, O’Leary RA, Lough JM (2012) Growth of Western Australian corals in the Anthropocene. Science 335:593–596

    Article  CAS  PubMed  Google Scholar 

  • Cornwall CE, Comeau S, Kornder NA, Perry CT, van Hooidonk R, DeCarlo TM et al (2021) Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc Natl Acad Sci USA 118:e2015265118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossland CJ (1984) Seasonal variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Mar Ecol Prog Ser 15:135–140

    Article  CAS  Google Scholar 

  • Davis KL, Colefax AP, Tucker JP, Kelaher BP, Santos IR (2021) Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Communications Earth & Environment 2:105

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27 year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999

    Article  PubMed  PubMed Central  Google Scholar 

  • Dornelas M, Madin JS, Baird AH, Connolly SR (2017) Allometric growth in reef-building corals. Proc R Soc B-Biol Sci 284:20170053. https://doi.org/10.1098/rspb.2017.0053

    Article  Google Scholar 

  • Dubinsky Z, Falkowski PG (2011) Light as a source of information and energy in zooxanthellate corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 107–118

    Chapter  Google Scholar 

  • Eddy TD, Lam VWY, Reygondeau G, Cisneros-Montemayor AM, Greer K, Palomares MLD, Bruno JF, Ota Y, Cheung WWL (2021) Global decline in coral reefs to provide ecosystem services. OneEarth 4:1278–1285

    Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay KB, Pichon M, Hoegh-Guldberg O (2017) Lower mesophotic coral communities (60–125 m depth) of the Northern Great Barrier Reef and Coral Sea. PLoS ONE 12:e0170336

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611

    Article  Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Cauwet G, Jaubert J, Allemand D (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274

    Article  Google Scholar 

  • Fletcher C, Bochicchio C, Conger C, Engels M et al (2008) Geology of Hawaii reefs. In: Riegl B, Dodge R (eds) Coral reefs of the USA. Springer, pp 435–488

    Chapter  Google Scholar 

  • Franklin EC, Jokiel PL, Donahue MJ (2013) Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar Ecol Prog Ser 481:121–132

    Article  Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    Article  CAS  PubMed  Google Scholar 

  • Goldberg WM (2018) Coral food, feeding, nutrition, and secretion: A Review. In: Kloc M, Kubiak J (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation. Springer, Cham, pp 377–421

    Google Scholar 

  • Grigg RW (1982) Darwin point: a threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Grigg RW (1983) Community structure, succession and development of coral reefs in Hawaii. Mar Ecol Prog Ser 11:1–14

    Article  Google Scholar 

  • Hughes TP (1987) Skeletal density and growth form of corals. Mar Ecol Prog Ser 35:259–266

    Article  Google Scholar 

  • Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. Galaxea J Coral Reef Stud 15:39–40

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012b) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77

    Article  CAS  Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Article  Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T, Hochberg E, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems (MCEs). In: Loya Y, Bridge T, Puglise K (eds) mesophotic coral ecosystems. Springer, Berlin, pp 799–826

    Google Scholar 

  • Kahng SE, Watanabe TK, Hu H-M, Watanabe T, Shen C-C (2020) Moderate zooxanthellate coral growth rate at mesophotic depths. Coral Reefs 39:1273–1284

    Article  Google Scholar 

  • Kahng SE, Wagner D, Lantz C, Vetter O, Gove J, Merrifield M (2012a) Temperature related depth limits of warm-water corals. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9C

  • Kramer N, Tamir R, Ben-Zvi O, Jacques SL, Loya Y, Wangpraseurt D (2022) Efficient light-harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 36:406–441

    Article  CAS  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 405–420

    Chapter  Google Scholar 

  • Levy O, Dubinsky Z, Schneider K, Achituv Y, Zakai D, Gorbunov MY (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117

    Article  Google Scholar 

  • Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  CAS  PubMed  Google Scholar 

  • Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202

    Article  PubMed  Google Scholar 

  • Lough JM, Cantin NE, Benthuysen JA, Cooper TF (2016) Environmental drivers of growth in massive Porites corals over 16 degrees of latitude along Australia’s northwest shelf. Limnol Oceanogr 61:684–700

    Article  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: Advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  CAS  PubMed  Google Scholar 

  • Madin JS, Baird AH, Dornelas M, Connolly SR (2014) Mechanical vulnerability explains size dependent mortality of reef corals. Ecol Lett 17:1008–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Madin JS, Baird AH, Baskett ML, Connolly SR, Dornelas MA (2020) Partitioning colony size variation into growth and partial mortality. Biol Let 16:20190727. https://doi.org/10.1098/rsbl.2019.0727

    Article  Google Scholar 

  • Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224

    Article  Google Scholar 

  • Medellín-Maldonado F, López-Pérez A, Ruiz-Huerta L, Carricart-Ganivet JP (2022) Understanding corallite demography to comprehend potential bias in sclerochronology: analysis of coral modular growth by micro-computed tomography. Oceanogr Limnol 67(12):2665–2676. https://doi.org/10.1002/lno.12229

    Article  Google Scholar 

  • Naumann MS, Richter C, Mott C, el-Zibdah M, Manasrah R, Wild C, (2012) Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea. J Mar Syst 105:20–29

    Article  Google Scholar 

  • Pérez-Rosales G, Rouzé H, Torda G, Bongaerts P, Pichon M, Parravicini V, Hédouin L, Consortium Under The Pole (2021) Mesophotic coral communities escape thermal coral bleaching in French Polynesia. R Soc Open Sc 8:210139

    Article  Google Scholar 

  • Pérez-Rosales G, Hernández-Agreda A, Bongaerts P, Rouzé H, Pichon M, Carlot J, Torda G, Parravicini V, Hédouin L (2022) Mesophotic depths hide high coral cover communities in French Polynesia. Sci Total Environ 844:157049

    Article  PubMed  Google Scholar 

  • Portner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313

    Article  PubMed  Google Scholar 

  • Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH (2015) Spatial, temporal and taxonomic variation in coral growth—implications for the structure and function of coral reef ecosystems. Oceanogr Mar Biol Annu Rev 53:215–295

    Google Scholar 

  • Pyle RL (2019) Advanced Technical Diving. In: Loya Y, Bridge T, Puglise K (eds) Mesophotic Coral Ecosystems. Springer Publishing, Berlin, pp 959–972

    Chapter  Google Scholar 

  • Rodgers KS, Jokiel PL, Brown EK et al (2015) Over a decade of change in spatial and temporal dynamics of hawaiian coral reef communities. Pac Sci 69:1–13. https://doi.org/10.2984/69.1.1

    Article  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceangr 52:1874–1882

    Article  Google Scholar 

  • Rouzé H, Galand PE, Medina M, Bongaerts P, Pichon M, Pérez-Rosales G, Torda G, Moya A, Bardout G, Périé-Bardout E, Marivint E, Lagarrigue G, Leblond J, Gazzola F, Pujolle S, Mollon N, Mittau A, Fauchet J, Paulme N, Pete R, Peyrusse K, Ferucci A, Magnan A, Horlaville M, Breton C, Gouin M, Markocic T, Jubert I, Herrmann P, Raina JB, Hédouin L (2021) Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME J 15:1564–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souter D, Serge P, Wicquart J, Logan M, Obura D, Staub F (2021) Status of coral reefs of the world: 2020 Executive Summary, (Townsville, Australia: Coral Reef Initiative, Global Coral Reef Monitoring Network)

Download references

Acknowledgements

This research was made possible by funding from the JSPS Invitational Fellowship for Research in Japan (Fellowship ID L20527) and by the Hawaii Undersea Research Laboratory (HURL). Special thanks to T. Kirby, M. Cremer and the HURL staff for operational support with the Pisces IV/V submersibles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Kahng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Several equations were wrongly typeset by the published in the original article and have now been updated to their final version.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahng, S., Kishi, T., Uchiyama, R. et al. Calcification rates in the lower photic zone and their ecological implications. Coral Reefs 42, 1207–1217 (2023). https://doi.org/10.1007/s00338-023-02410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-023-02410-7

Keywords

Navigation