Skip to main content
Log in

Co-Kontraktionen bei spezifischen Funktionen – Definitionsprobleme erschweren Zugang zu Forschungsergebnissen

Co-contractions during specific functions—problematic definitions hinder access to research results

  • Literatur im Fokus
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Rau, Moritz persönliche Mitteilung 2015

  2. Rau, Moritz persönliche Mitteilung 2015

Literatur

  1. Bååth R, Madison G (2012) The subjective difficulty of tapping to a slow beat. In: 12th International Conference on Music Perception and Cognition (Thessaloniki)

    Google Scholar 

  2. Bangert M, Junck F, Benckert J, Jabusch HC (2017) Optimierte Bewegungsstrategien beim Schlagzeugspiel im Hochtempobereich. Musikphysiologie Musikermedizin 24(3):145–158

    Google Scholar 

  3. Barr DJ, Levy R, Scheepers C, Tilyc HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang. https://doi.org/10.1016/j.jml.2012.11.001

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bartlett R (2007) Introduction to Sports Biomechanics: Analysing Human Movement Patterns. Routledge, Abingdon, UK https://doi.org/10.4324/9780203462027

    Book  Google Scholar 

  5. Bernstein NA (1967) The Co-ordination and Regulation of Movements. Pergamon Press Ltd, Oxford, UK (Bernstein NA. 1975. Bewegungsphysiologie. Leipzig: Barth, 1975.)

    Google Scholar 

  6. Beyer L, Liefring V, Niemier K, Seidel EJ (2023) Funktionsmedizin. Funktionen – Störungen – Krankheiten des Bewegungssystems, 1. Aufl. Kiener Verlag, München, S 224

    Google Scholar 

  7. Bousnina M (2011) Definitionen, Messverfahren und Auswirkungen von muskulären Dysbalancen. GRIN, München

    Google Scholar 

  8. Buck B, Beveridge S, Breaden Madden G, Jabusch HC (2021) Expertise- and Tempo-Related Performance Differences in Unimanual Drumming. Motor Control 25(4):644–679. https://doi.org/10.1123/mc.2020-0029

    Article  PubMed  Google Scholar 

  9. Busse ME, Wiles CM, van Deursen RWM (2005) Muscle co-activation in neurological conditions. Phys Ther Rev 10(4):247–253. https://doi.org/10.1179/108331905X78915

    Article  Google Scholar 

  10. Chapman AR, Vicenzino B, Blanch P, Hodges PW (2007) Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Exp Brain Res 181(3):503–518

    Article  PubMed  Google Scholar 

  11. Chapman AR, Vicenzino B, Blanch P, Hodges PW (2008) Patterns of leg muscle recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol 18(3):359–371

    Article  PubMed  Google Scholar 

  12. Chatfield C (1984) The Analysis of Time Series. Chapman and Hall, New York, NY https://doi.org/10.1007/978-1-4899-2921-1

    Book  Google Scholar 

  13. Chong HJ, Kim SJ, Lee EK, Yoo GE (2015a) Analysis of surface EMG activation in hand percussion playing depending on the grasping type and the tempo. J Exerc Rehabil 11:228. https://doi.org/10.12965/jer.150216

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chong HJ, Kim SJ, Yoo GE (2015b) Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles. Front Psychol 6:1277. https://doi.org/10.3389/fpsvg.2015.01277

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dahl S (2000) The playing of an accent—Preliminary observations from temporal and kinematic analysis of percussionists. Jnew Mus Res 29:225–233. https://doi.org/10.1076/jnmr.29.3.225.3090

    Article  Google Scholar 

  16. Dahl S (2004) Playing the accent-comparing striking velocity and timing in an ostinato rhythm performed by four drummers. Acta Acust Unit Acust 90:62–76

    Google Scholar 

  17. Dahl S (2006) Movements and analysis of drumming. In: Music, Control M, Brain (Hrsg) M. W. Altenmüller und J. Kesselring. Oxford University Press, Oxford, S 125–138 https://doi.org/10.1093/acprof:oso/9780199298723.003.0008

    Chapter  Google Scholar 

  18. Dahl S (2011) Striking movements: a survey of motion analysis of percussionists. Acoust Sci Technol 32:168–173. https://doi.org/10.1250/ast.32.168

    Article  Google Scholar 

  19. Dahl S, Altenmüller E (2008) Motor control in drumming: influence of movement pattern on contact force and sound characteristics. J Acoust Soc Am 123:3122. https://doi.org/10.1121/1.2933043

    Article  ADS  Google Scholar 

  20. De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163. https://doi.org/10.1123/jab.13.2.135

    Article  Google Scholar 

  21. De La Rue SE, Draper SB, Potter CR, Smith MS (2013) Energy expenditure in rock/pop drumming. Int J Sports Med 34:868–872. https://doi.org/10.1055/s-0033-1337905

    Article  PubMed  Google Scholar 

  22. Dorel S, Couturier A, Hug F (2008) Intra-session repeatability of lower limb muscles activation pattern during pedaling. J Electromyogr Kinesiol 18(5):857–865

    Article  PubMed  Google Scholar 

  23. Ericson MO (1988) Muscular function during ergometer cycling. Scand J Rehabil Med 20(1):35–41

    CAS  PubMed  Google Scholar 

  24. Famularo D, Bergamin J (1999) It’s Your Move: Motions and Emotions. FL: Alfred Music Publishing, Miami

    Google Scholar 

  25. Freivalds A (2004) Biomechanics of the Upper Limbs: Mechanics, Modeling and Musculoskeletal Injuries. CRC Press, Boca Raton, FL https://doi.org/10.1201/9780203484869

    Book  Google Scholar 

  26. Freiwald J, Engelhardt M (1996) Neuromuskuläre Dysbalancen in Medizin und Sport. Dtsch.Zeitschrift Sportemdizin, S 99–106

    Google Scholar 

  27. Fujii S, Moritani T (2012) Spike shape analysis of surface electromyographic activity in wrist flexor and extensor muscles of the world’s fastest drummer. Neurosci Lett 514:185–188. https://doi.org/10.1016/j.neulet.2012.02.089

    Article  CAS  PubMed  Google Scholar 

  28. Fujii S, Kudo K, Ohtsuki T, Oda S (2009a) Tapping performance and underlying wrist muscle activity of non-drummers, drummers, and the world’s fastest drummer. Neurosci Lett 459:69–73. https://doi.org/10.1016/j.neulet.2009.04.055

    Article  CAS  PubMed  Google Scholar 

  29. Fujii S, Kudo K, Shinya M, Ohtsuki T, Oda S (2009b) Wrist muscle activity during rapid unimanual tapping with a drumstick in drummers and nondrummers. Motor Control 13:237–250. https://doi.org/10.1123/mcj.13.3.237

    Article  PubMed  Google Scholar 

  30. Fujii S, Hirashima M, Kudo K, Ohtsuki T, Nakamura Y, Oda S (2011) Synchronization error of drum kit playing with a metronome at different tempi by professional drummers. Music Percept 28:491–503. https://doi.org/10.1525/mp.2011.28.5.491

    Article  Google Scholar 

  31. Fujisawa T, Miura M (2010) Investigating a playing strategy for drumming using surface electromyograms. Acoust Sci Technol 31:300–303. https://doi.org/10.1250/ast.31.300

    Article  Google Scholar 

  32. Furuya S, Kinoshita H (2008) Organization of the upper limb movement for piano key-depression differs between expert pianists and novice players. Exp Brain Res 185:581–593. https://doi.org/10.1007/s00221-007-1184-9

    Article  PubMed  Google Scholar 

  33. Gottschalk F, Kourosh S, Leveau B (1989) The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat 166:179–189

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405. https://doi.org/10.1152/jn.01020.2002

    Article  PubMed  Google Scholar 

  35. Halaki M, Ginn K (2012) Normalization of EMG signals: to normalize or not to normalize and what to normalize to? In: Naik GR (Hrsg) Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges. INTECH Open Access, Rijeka; Croatia https://doi.org/10.5772/49957

    Chapter  Google Scholar 

  36. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  37. Heuer H (2007) Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res 178:363–373. https://doi.org/10.1007/s00221-006-0747-5

    Article  PubMed  Google Scholar 

  38. Hirokawa S (1991) Three-dimensional mathematical model analysis of the patellofemoral joint. J Biomech 24(8):659–671

    Article  CAS  PubMed  Google Scholar 

  39. Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19(2):182–198

    Article  PubMed  Google Scholar 

  40. Huysmans M, Hoozemans M, Van der Beek A, De Looze M, Van Dieën J (2008) Fatigue effects on tracking performance and muscle activity. J Electromyogr Kinesiol 18:410–419. https://doi.org/10.1016/j.jelekin.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs R, Bobbert MF, van Ingen Schenau GJ (1993) Function of mono- and biarticular muscles in running. Med Sci Sports Exerc 25(10):1163–1173

    Article  CAS  PubMed  Google Scholar 

  42. Janda V (1994) Manuelle Muskelfunktionsdiagnostik. Ullstein-Mosby, Berlin

    Google Scholar 

  43. Jorge M, Hull ML (1986) Analysis of EMG measurements during bicycle pedalling. J Biomech 19(9):683–694

    Article  CAS  PubMed  Google Scholar 

  44. Kenward M, Roger J (1997) The precision of fixed effects estimates from restricted maximum likelihood. Biometrics 53:983–997. https://doi.org/10.2307/2533558

    Article  CAS  PubMed  Google Scholar 

  45. Konrad P (2005) The ABC of EMG. A Practical Introduction to Kinesiological Electromyography. Noraxon U.S.A Inc, Scottsdale, AZ

    Google Scholar 

  46. Krause V, Schnitzler A, Pollok B (2010) Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage 52:245–251. https://doi.org/10.1016/j.neuroimage.2010.03.081

    Article  PubMed  Google Scholar 

  47. Li L, Caldwell GE (1999) Coefficient of cross correlation and the time domain correspondence. J Electromyogr Kinesiol 9:385–389. https://doi.org/10.1016/S1050-6411(99)00012-7

    Article  CAS  PubMed  Google Scholar 

  48. Liefring V, Vinzelberg S, Seidel EJ, Beyer L (2020) Von der Funktionsstörung zur Funktionserkrankung. Ein Modell als Grundlage für die Diagnostik und Therapie von Rückenschmerzen – From the dysfunction to functional disease—a model as basis for the diagnosis and therapy of back pain. In: Orthopädische und Unfallchirurgische Praxis, 5. Aufl. 9. Deutscher Ärzteverlag, OUP-Sonderheft Schmerz, S 302–307

    Google Scholar 

  49. Logozzo D (1993) Systems of Natural Drumming: Stone, Gladstone, Moeller. Indianapolis, IN, Percussive

    Google Scholar 

  50. Madison G (2000) On the nature of variability in isochronous serial interval production. In: Desain P, Windsor L (Hrsg) Rhythm Perception and Production. Swets and Zeitlinger, Lisse, S 95–113

    Google Scholar 

  51. Mayer J (2007) Secret Weapons for the Modern Drummer

    Google Scholar 

  52. Milner TE (2002) Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp Brain Res 143:406–416. https://doi.org/10.1007/s00221-002-1001-4

    Article  PubMed  Google Scholar 

  53. Miura A, Kudo K, Ohtsuki T, Kanehisa H, Nakazawa K (2013) Relationship between muscle cocontraction and proficiency in whole-body sensorimotor synchronization: a comparison study of street dancers and nondancers. Motor Control 17:18–33. https://doi.org/10.1123/mcj.17.1.18

    Article  PubMed  Google Scholar 

  54. Moeller SA (1956) The Moeller Book: The Art of Snare Drumming. Ludwig Music Publishing Company, Chicago, IL

    Google Scholar 

  55. Moore SP, Marteniuk R (1986) Kinematic and electromyographic changes that occur as a function of learning a time-constrained aiming task. J Mot Behav 18:397–426. https://doi.org/10.1080/00222895.1986.10735388

    Article  CAS  PubMed  Google Scholar 

  56. Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  57. Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T et al (2002) Short-and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88:991–1004. https://doi.org/10.1152/jn.2002.88.2.991

    Article  PubMed  Google Scholar 

  58. Repp BH (2010a) Self-generated interval subdivision reduces variability of synchronization with a very slow metronome. Music Percept 27:389–397. https://doi.org/10.1525/mp.2010.27.5.389

    Article  Google Scholar 

  59. Repp BH (2010b) Sensorimotor synchronization and perception of timing: effects of music training and task experience. Hum Mov Sci 29:200–213. https://doi.org/10.1016/j.humov.2009.08.002

    Article  PubMed  Google Scholar 

  60. Repp BH, Doggett R (2007) Tapping to a very slow beat: a comparison of musicians and nonmusicians. Music Percept 24:367–336. https://doi.org/10.1525/mp.2007.24.4.367

    Article  Google Scholar 

  61. Ryan MM, Gregor RJ (1992) EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J Electromyogr Kinesiol 2(2):69–80

    Article  CAS  PubMed  Google Scholar 

  62. Seidel EJ, Beyer, D Konzept Funktionsmedizin, Seidel EJ, Smolenski UC, Reißhauer A (2023) Physikalische und Rehabilitative Medizin – Systematische Übersicht der Diagnostik und Therapie Querschnittsfach 12 / Rehabilitation, Physikalische Medizin, Naturheilverfahren – Ergebnisse der Konsensuskonferenz 2023/2024 7. Auflage Kiener Verlag, München, S 44–51

    Google Scholar 

  63. Seidel EJ, Smolenski UC, Reißhauer A (2023) Physikalische und Rehabilitative Medizin – Systematische Übersicht der Diagnostik und Therapie Querschnittsfach 12 / Rehabilitation, Physikalische Medizin, Naturheilverfahren – Ergebnisse der Konsensuskonferenz 2023/2024; 7. Auflage Kiener Verlag, München, S 54 (978-3-948442-48-4)

    Google Scholar 

  64. Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19:8573–8588. https://doi.org/10.1523/JNEUROSCI.19-19-08573.1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tittel K (2014) Muskuläre und arthromuskuläre Dysbalancen – Pro und Kontra Funktionell-anatomische und sportmedizinische Aspekte. Manuelle Medizin 52:101–106

    Article  Google Scholar 

  66. Tittel K, Seidel MEJ (2016) Beschreibende und Funktionelle Anatomie, 16. Aufl. Kiener-Verlag, Seiten, S 528

    Google Scholar 

  67. Verrel J, Pologe S, Manselle W, Lindenberger U, Woollacott M (2013) Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: coordination underlying quick bow reversals during continuous cello bowing. Front Hum Neurosci 7:157. https://doi.org/10.3389/fnhum.2013.00157

    Article  PubMed Central  PubMed  Google Scholar 

  68. Waadeland CH (2003) Analysis of jazz drummers’ movements in performance of swing groove—a preliminary report. In: Proceedings of the Stockholm Music Acoustics Conference (SMAC03). Stockholm, S 573–556

    Google Scholar 

  69. Waadeland CH (2006) The influence of tempo on movement and timing in rhythm performance. In: Proceedings of the 9th International Conference on Music Perception and Cognition (ICMPC9), Bd. 29. Bologna

    Google Scholar 

  70. Wong J, Wilson ET, Malfait N, Gribble PL (2009) Limb stiffness is modulated with spatial accuracy requirements during movement in the absence of destabilizing forces. J Neurophysiol 101:1542–1549. https://doi.org/10.1152/jn.91188.2008

    Article  PubMed  Google Scholar 

Weiterführende Literatur

  1. van Ingen Schenau GJ, Dorssers WM, Welter TG, Beelen A, de Groot G, Jacobs R (1995) The control of mono-articular muscles in multijoint leg extensions in man. J Physiol 484(Pt 1):247–254

    Article  PubMed Central  PubMed  Google Scholar 

  2. (2021) https://www.uni-saarland.de/einrichtung/hochschulsport/bewegungswelt-campus/hsponline/theorie/dysbalancen.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Seidel.

Ethics declarations

Interessenkonflikt

L. Beyer und E.J. Seidel geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, L., Seidel, E.J. Co-Kontraktionen bei spezifischen Funktionen – Definitionsprobleme erschweren Zugang zu Forschungsergebnissen. Manuelle Medizin (2024). https://doi.org/10.1007/s00337-024-01039-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00337-024-01039-z

Navigation