Andersen PR, Tirian L, Vunjak M, Brennecke J (2017) A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 549:54–59
CAS
PubMed
PubMed Central
Article
Google Scholar
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207
CAS
PubMed
Article
Google Scholar
Aravin AA (2020) Pachytene piRNAs as beneficial regulators or a defense system gone rogue. Nat Genet 52:644–645
CAS
PubMed
Article
Google Scholar
Aravin AA, Hannon GJ (2008) Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol 73:283–290
CAS
PubMed
Article
Google Scholar
Aravin AA, Hannon GJ, Brennecke J (2007a) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764
CAS
PubMed
Article
Google Scholar
Aravin AA, Sachidanandam R, Bourchis D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799
CAS
PubMed
PubMed Central
Article
Google Scholar
Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007b) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747
CAS
PubMed
Article
Google Scholar
Aravin AA, van Derheijden GW, Castañeda J, Vagin VV, Hannon GJ, Bortvin A (2009) Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 5:1000764
Article
CAS
Google Scholar
Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027
CAS
PubMed
Article
Google Scholar
Assis R, Kondrashov AS (2009) Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution. Proc Natl Acad Sci USA 106:7079–7082
CAS
PubMed
PubMed Central
Article
Google Scholar
Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol 3:222
Article
CAS
Google Scholar
Beyret E, Liu N, Lin H (2012) piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res 22:1429–1439
CAS
PubMed
PubMed Central
Article
Google Scholar
Blumenstiel JP, Erwin AA, Hemmer LW (2016) What drives positive selection in the drosophila piRNA machinery? The genomic autoimmunity hypothesis. Yale J Biol Med 89:499–512
CAS
PubMed
PubMed Central
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103
CAS
PubMed
Article
Google Scholar
Carmell MA, Girard A, van de Kant HJ, Bourchis D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514
CAS
PubMed
Article
Google Scholar
Carmo-Fonseca M, Tollervey D, Pepperkok R, Barabino SM, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI (1991) Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J 10:195–206
CAS
PubMed
PubMed Central
Article
Google Scholar
Castaneda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR, Ingolia NT, Bortvin A (2014) Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 33:1999–2019
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG, Guo Y, Tenaglia E, Xu C, Gish G, Min J, Pawson T (2009) Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci USA 106:20336–20341
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheng EC, Kang D, Wang Z, Lin H (2014) PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS ONE 9:97821
Article
CAS
Google Scholar
Chirn GW, Rahman R, Sytnikova YA, Matts JA, Zeng M, Gerlach D, Yu M, Berger B, Naramura M, Kile BT, Lau NC (2015) Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet 11:e1005652
PubMed
PubMed Central
Article
CAS
Google Scholar
Choi H, Wang Z, Dean J (2021) Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet 17:e1009485
CAS
PubMed
PubMed Central
Article
Google Scholar
Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA 103:15894–15899
CAS
PubMed
PubMed Central
Article
Google Scholar
Chuma S, Hosokawa M, Tanaka T, Nakatsuji N (2009) Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol Cell Endocrinol 306:17–23
CAS
PubMed
Article
Google Scholar
Czech B, Hannon GJ (2016a) One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 41:324–337
CAS
PubMed
PubMed Central
Article
Google Scholar
Czech B, Hannon GJ (2016b) A Happy 3’ Ending to the piRNA Maturation Story. Cell 164:838–840
CAS
PubMed
Article
Google Scholar
Czech B, Preall JB, McGinn J, Hannon GJ (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761
CAS
PubMed
PubMed Central
Article
Google Scholar
Darricarrère N, Liu N, Watanabe T, Lin H (2013) Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc Natl Acad Sci U S A 110:1297–1302
PubMed
PubMed Central
Article
Google Scholar
Daugherty MD, Malik HS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46:677–700
CAS
PubMed
Article
Google Scholar
De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D (2011) The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480:259–263
PubMed
Article
CAS
Google Scholar
Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830
CAS
PubMed
Article
Google Scholar
Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O’Carroll D (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50:601–608
PubMed
Article
CAS
Google Scholar
Ding D, Liu J, Dong K, Melnick AF, Latham KE, Chen C (2019) Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic Acids Res 47:2594–2608
CAS
PubMed
Article
Google Scholar
Ding D, Liu J, Dong K, Midic U, Hess RA, Xie H, Demireva EY, Chen C (2017) PNLDC1 is essential for piRNA 3’ end trimming and transposon silencing during spermatogenesis in mice. Nat Commun 8:819
PubMed
PubMed Central
Article
CAS
Google Scholar
Ding D, Liu J, Midic U, Wu Y, Dong K, Melnick A, Latham KE, Chen C (2018) TDRD5 binds piRNA precursors and selectively enhances pachytene piRNA processing in mice. Nat Commun 9:127
PubMed
PubMed Central
Article
CAS
Google Scholar
Eddy EM (1974) Fine structural observations on the form and distribution of nuage in germ cells of the rat. Anat Rec 178:731–757
CAS
PubMed
Article
Google Scholar
Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280
CAS
PubMed
Article
Google Scholar
Fabry MH, Ciabrelli F, Munafò M, Eastwood EL, Kneuss E, Falciatori I, Falconio FA, Hannon GJ, Czech B (2019) piRNA-guided co-transcriptional silencing coopts nuclear export factors. Elife 8:e47999
CAS
PubMed
PubMed Central
Article
Google Scholar
Farazi, T. A., Juranek, S. A., and Tuschl, T. (2008). The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development
Fawcett DW, Eddy EM, Phillips DM (1970) Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol Reprod 2:129–153
CAS
PubMed
Article
Google Scholar
Feltzin VL, Khaladkar M, Abe M, Parisi M, Hendriks GJ, Kim J, Bonini NM (2015) The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 14:443–452
CAS
PubMed
PubMed Central
Article
Google Scholar
Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130:859–871
CAS
PubMed
Article
Google Scholar
Fine AD, Ball RL, Fujiwara Y, Handel MA, Carter GW (2019) Uncoupling of transcriptomic and cytological differentiation in mouse spermatocytes with impaired meiosis. Mol Biol Cell 30:717–728
CAS
PubMed
PubMed Central
Article
Google Scholar
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P (2013) A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155:807–816
CAS
PubMed
Article
Google Scholar
Freedman JE, Gerstein M, Mick E, Rozowsky J, Levy D, Kitchen R, Das S, Shah R, Danielson K, Beaulieu L, Navarro FC, Wang Y, Galeev TR, Holman A, Kwong RY, Murthy V, Tanriverdi SE, Koupenova-Zamor M, Mikhalev E, Tanriverdi K (2016) Diverse human extracellular RNAs are widely detected in human plasma. Nat Commun 7:11106
CAS
PubMed
PubMed Central
Article
Google Scholar
Frost RJ, Hamra FK, Richardson JA, Qi X, Bassel-Duby R, Olson EN (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci USA 107:11847–11852
CAS
PubMed
PubMed Central
Article
Google Scholar
Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD (2018) A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol Cell 71:775-790.e5
CAS
PubMed
PubMed Central
Article
Google Scholar
Galton, R., Fejes-Toth, K., and Bronner, M. E. (2021). A somatic piRNA pathway regulates epithelial-to-mesenchymal transition of chick neural crest cells.
Gan B, Chen S, Liu H, Min J, Liu K (2019) Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol 54:119–132
CAS
PubMed
Article
Google Scholar
Gao Q, Frohman MA (2012) Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis. BMB Rep 45:7–13
CAS
PubMed
Article
Google Scholar
Geisinger A, Rodríguez-Casuriaga R, Benavente R (2021) Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 9:626020
PubMed
PubMed Central
Article
Google Scholar
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202
PubMed
Article
Google Scholar
Goh WS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ (2015) piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 29:1032–1044
CAS
PubMed
PubMed Central
Article
Google Scholar
Gold B, Fujimoto H, Kramer JM, Erickson RP, Hecht NB (1983) Haploid accumulation and translational control of phosphoglycerate kinase-2 messenger RNA during mouse spermatogenesis. Dev Biol 98:392–399
CAS
PubMed
Article
Google Scholar
Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, Zhao S, Hu SD, Wu LG, Shi HJ, Li Y, Fu XD, Qu LH, Wang ED, Liu MF (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24:680–700
CAS
PubMed
PubMed Central
Article
Google Scholar
Gould DW, Lukic S, Chen KC (2012) Selective constraint on copy number variation in human piwi-interacting RNA Loci. PLoS ONE 7:e46611
CAS
PubMed
PubMed Central
Article
Google Scholar
Graille M, Séraphin B (2012) Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 13:727–735
CAS
PubMed
Article
Google Scholar
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197
CAS
PubMed
Article
Google Scholar
Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714
CAS
PubMed
PubMed Central
Article
Google Scholar
Guan Y, Keeney S, Jain D, Wang PJ (2021) yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genet 17:e1009265
CAS
PubMed
PubMed Central
Article
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590
CAS
PubMed
Article
Google Scholar
Haase AD (2016) A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2016:7595791
PubMed
Article
CAS
Google Scholar
Haase AD, Fenoglio S, Muerdter F, Guzzardo PM, Czech B, Pappin DJ, Chen C, Gordon A, Hannon GJ (2010) Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev 24(22):2499–2504
CAS
PubMed
PubMed Central
Article
Google Scholar
Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL (2011) The 3’-to-5’ exoribonuclease Nibbler shapes the 3’ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 21:1878–1887
CAS
PubMed
PubMed Central
Article
Google Scholar
Han BW, Wang W, Li C, Weng Z, Zamore PD (2015) Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348:817–821
CAS
PubMed
PubMed Central
Article
Google Scholar
Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K, Mechtler K, Stark A, Sachidanandam R, Brennecke J (2011) A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 30:3977–3993
CAS
PubMed
PubMed Central
Article
Google Scholar
Harris AN, Macdonald PM (2001) aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128:2823–2832
CAS
PubMed
Article
Google Scholar
Hasuwa, H., Iwasaki, Y. W., Au Yeung, W. K., Ishino, K., Masuda, H., Sasaki, H., and Siomi, H. (2021). Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat Cell Biol
Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J (2016) Genetic and mechanistic diversity of piRNA 3’-end formation. Nature 539:588–592
CAS
PubMed
PubMed Central
Article
Google Scholar
Homolka D, Pandey RR, Goriaux C, Brasset E, Vaury C, Sachidanandam R, Fauvarque MO, Pillai RS (2015) PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep 12:418–428
CAS
PubMed
Article
Google Scholar
Honda S, Kirino Y, Maragkakis M, Alexiou P, Ohtaki A, Murali R, Mourelatos Z, Kirino Y (2013) Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA 19:1405–1418
CAS
PubMed
PubMed Central
Article
Google Scholar
Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272
CAS
PubMed
Article
Google Scholar
Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301:38–52
CAS
PubMed
Article
Google Scholar
Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491:279–283
CAS
PubMed
PubMed Central
Article
Google Scholar
Ishino K, Hasuwa H, Yoshimura J, Iwasaki YW, Nishihara H, Seki NM, Hirano T, Tsuchiya M, Ishizaki H, Masuda H, Kuramoto T, Saito K, Sakakibara Y, Toyoda A, Itoh T, Siomi MC, Morishita S, Siomi H (2021) Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res 49:2700–2720
CAS
PubMed
PubMed Central
Article
Google Scholar
Ishizu H, Iwasaki YW, Hirakata S, Ozaki H, Iwasaki W, Siomi H, Siomi MC (2015) Somatic primary piRNA biogenesis driven by cis-acting RNA elements and trans-acting Yb. Cell Rep 12:429–440
CAS
PubMed
Article
Google Scholar
Izumi N, Shoji K, Suzuki Y, Katsuma S, Tomari Y (2020) Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature 578:311–316
CAS
PubMed
Article
Google Scholar
Jahn CL, Klobutcher LA (2002) Genome remodeling in ciliated protozoa. Annu Rev Microbiol 56:489–520
CAS
PubMed
Article
Google Scholar
Jamsai D, O’Connor AE, Odonnell L, Lo JC, O’Bryan MK (2015) Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteins during spermatogenesis. Spermatogenesis 5:979061
Article
Google Scholar
Kabayama Y, Toh H, Katanaya A, Sakurai T, Chuma S, Kuramochi-Miyagawa S, Saga Y, Nakano T, Sasaki H (2017) Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res 45:5387–5398
CAS
PubMed
PubMed Central
Google Scholar
Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326
CAS
PubMed
PubMed Central
Article
Google Scholar
Kawaoka S, Mitsutake H, Kiuchi T, Kobayashi M, Yoshikawa M, Suzuki Y, Sugano S, Shimada T, Kobayashi J, Tomari Y, Katsuma S (2012) A role for transcription from a piRNA cluster in de novo piRNA production. RNA 18:265–273
CAS
PubMed
PubMed Central
Article
Google Scholar
Keam SP, Young PE, McCorkindale AL, Dang TH, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DI, Cropley JE, Suter CM (2014) The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res 42:8984–8995
CAS
PubMed
PubMed Central
Article
Google Scholar
Kervestin S, Jacobson A (2012) NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 13:700–712
CAS
PubMed
PubMed Central
Article
Google Scholar
Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161
CAS
PubMed
Article
Google Scholar
Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA 101:16583–16587
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim M, Ki BS, Hong K, Park SP, Ko JJ, Choi Y (2016) Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis. Asian-Australas J Anim Sci 29:944–951
CAS
PubMed
Article
Google Scholar
Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2´-O-methylated at their 3′ termini. Nat Struct Mol Biol 14:347–348
CAS
PubMed
Article
Google Scholar
Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng Z, Theurkauf WE (2009) The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138:1137–1149
CAS
PubMed
PubMed Central
Article
Google Scholar
Kolaczkowski B, Hupalo DN, Kern AD (2011) Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Mol Biol Evol 28:1033–1042
CAS
PubMed
Article
Google Scholar
Koonin EV, Yutin N (2020) The crAss-like Phage group: how metagenomics reshaped the human virome. Trends Microbiol 28:349–359
CAS
PubMed
Article
Google Scholar
Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8:85–90
CAS
PubMed
Article
Google Scholar
Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62:1415–1434
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849
CAS
PubMed
Article
Google Scholar
Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, Shiromoto Y, Asada N, Toyoda A, Fujiyama A, Totoki Y, Shibata T, Kimura T, Nakatsuji N, Noce T, Sasaki H, Nakano T (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 24:887–892
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917
CAS
PubMed
PubMed Central
Article
Google Scholar
Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367
CAS
PubMed
Article
Google Scholar
Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099
CAS
PubMed
PubMed Central
Article
Google Scholar
Levine MT, McCoy C, Vermaak D, Lee YC, Hiatt MA, Matsen FA, Malik HS (2012) Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLoS Genet 8:e1002729
CAS
PubMed
PubMed Central
Article
Google Scholar
Levine MT, Vander Wende HM, Hsieh E, Baker EP, Malik HS (2016) Recurrent gene duplication diversifies genome defense repertoire in drosophila. Mol Biol Evol 33:1641–1653
CAS
PubMed
PubMed Central
Article
Google Scholar
Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, Sharma PP, Cordaux R, Gilbert C, Giraud I, Collins DH, Zamore PD, Miska EA, Sarkies P, Jiggins FM (2018) Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol 2:174–181
PubMed
Article
Google Scholar
Li XC, Schimenti JC (2007) Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet 3:e130
PubMed
PubMed Central
Article
Google Scholar
Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50:67–81
CAS
PubMed
PubMed Central
Article
Google Scholar
Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L, Mann J, Scott HS, Jamsai D, Adelson DL, Obryan MK (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11:e1005620
PubMed
PubMed Central
Article
CAS
Google Scholar
Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476
CAS
PubMed
Article
Google Scholar
Liu L, Qi H, Wang J, Lin H (2011) PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 138:1863–1873
CAS
PubMed
PubMed Central
Article
Google Scholar
Loubalova Z, Fulka H, Horvat F, Pasulka J, Malik R, Hirose M, Ogura A, Svoboda P (2021) Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat Cell Biol
Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, Han DY, Harris RA, Coarfa C, Gunaratne PH, Yan W, Matzuk MM (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 5:e1000635
PubMed
PubMed Central
Article
CAS
Google Scholar
Mai D, Zheng Y, Guo H, Ding P, Bai R, Li M, Ye Y, Zhang J, Huang X, Liu D, Sui Q, Pan L, Su J, Deng J, Wu G, Li R, Deng S, Bai Y, Ligu Y, Tan W, Wu C, Wu T, Zheng J, Lin D (2020) Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics 10:8468–8478
CAS
PubMed
PubMed Central
Article
Google Scholar
Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668
CAS
PubMed
PubMed Central
Article
Google Scholar
Mao Y, Qian SB (2020) Ribosome-guided piRNA production. Nat Cell Biol 22:141–142
CAS
PubMed
Article
Google Scholar
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL (2015) Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 5:10423
PubMed
PubMed Central
Article
Google Scholar
Matsumoto N, Nishimasu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, Siomi H, Siomi MC, Nureki O (2016) Crystal structure of silkworm PIWI-clade argonaute Siwi bound to piRNA. Cell 167:484-497.e9
CAS
PubMed
Article
Google Scholar
Matsumoto N, Sato K, Nishimasu H, Namba Y, Miyakubi K, Dohmae N, Ishitani R, Siomi H, Siomi MC, Nureki O (2015) Crystal structure and activity of the endoribonuclease domain of the piRNA pathway factor maelstrom. Cell Rep 11:366–375
CAS
PubMed
Article
Google Scholar
Mei Y, Wang Y, Kumari P, Shetty AC, Clark D, Gable T, MacKerell AD, Ma MZ, Weber DJ, Yang AJ, Edelman MJ, Mao L (2015) A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 6:7316
CAS
PubMed
Article
Google Scholar
Meikar O, Da Ros M, Korhonen H, Kotaja N (2011) Chromatoid body and small RNAs in male germ cells. Reproduction 142:195–209
CAS
PubMed
Article
Google Scholar
Meikar O, Vagin VV, Chalmel F, Sostar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N (2014) An atlas of chromatoid body components. RNA 20:483–495
CAS
PubMed
PubMed Central
Article
Google Scholar
Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110:689–699
CAS
PubMed
Article
Google Scholar
Mochizuki K, Gorovsky MA (2004) Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14:181–187
CAS
PubMed
Article
Google Scholar
Mohn F, Handler D, Brennecke J (2015) Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348:812–817
CAS
PubMed
PubMed Central
Article
Google Scholar
Moyano M, Stefani G (2015) piRNA involvement in genome stability and human cancer. J Hematol Oncol 8:38
PubMed
PubMed Central
Article
CAS
Google Scholar
Muerdter F, Olovnikov I, Molaro A, Rozhkov NV, Czech B, Gordon A, Hannon GJ, Aravin AA (2012) Production of artificial piRNAs in flies and mice. RNA 18:42–52
CAS
PubMed
PubMed Central
Article
Google Scholar
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H (2019) Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 38:e102870
PubMed
PubMed Central
Article
CAS
Google Scholar
Murchison EP, Kheradpour P, Sachidanandam R, Smith C, Hodges E, Xuan Z, Kellis M, Grutzner F, Stark A, Hannon GJ (2008) Conservation of small RNA pathways in platypus. Genome Res 18:995–1004
CAS
PubMed
PubMed Central
Article
Google Scholar
Nandi S, Chandramohan D, Fioriti L, Melnick AM, Hébert JM, Mason CE, Rajasethupathy P, Kandel ER (2016) Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci USA 113:12697–12702
CAS
PubMed
PubMed Central
Article
Google Scholar
Nicholls PK, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA, Dobrinski I, Watson AL, Carlson DF, Fahrenkrug SC, Page DC (2019) Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 116:25677–25687
CAS
PubMed
PubMed Central
Article
Google Scholar
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28:3820–3831
CAS
PubMed
PubMed Central
Article
Google Scholar
Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T, Inagaki S, Siomi H, Siomi MC (2007) Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13:1911–1922
CAS
PubMed
PubMed Central
Article
Google Scholar
Nishimasu H, Ishizu H, Saito K, Fukuhara S, Kamatani MK, Bonnefond L, Matsumoto N, Nishizawa T, Nakanaga K, Aoki J, Ishitani R, Siomi H, Siomi MC, Nureki O (2012) Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491:284–287
CAS
PubMed
Article
Google Scholar
Nishimura T, Nagamori I, Nakatani T, Izumi N, Tomari Y, Kuramochi-Miyagawa S, Nakano T (2018) PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep 19:e44957
PubMed
PubMed Central
Article
CAS
Google Scholar
Obbard DJ, Welch JJ, Kim KW, Jiggins FM (2009) Quantifying adaptive evolution in the Drosophila immune system. PLoS Genet 5:e1000698
PubMed
PubMed Central
Article
CAS
Google Scholar
Ohara T, Sakaguchi Y, Suzuki T, Ueda H, Miyauchi K, Suzuki T (2007) The 3′ termini of mouse Piwi-interacting RNAs are 2´-O-methylated. Nat Struct Mol Biol 14:349–350
CAS
PubMed
Article
Google Scholar
Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J (2012) The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 47:954–969
CAS
PubMed
PubMed Central
Article
Google Scholar
Onohara Y, Yokota S (2012) Nuage components and their contents in mammalian spermatogenic cells, as revealed by immunoelectron microscopy. Meiosis 40:217–240
Google Scholar
Özata DM, Yu T, Mou H, Gainetdinov I, Colpan C, Cecchini K, Kaymaz Y, Wu PH, Fan K, Kucukural A, Weng Z, Zamore PD (2020) Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat Ecol Evol 4:156–168
PubMed
Article
Google Scholar
Palmer, S., and Whybrow, A. (2007). Handbook of coaching psychology
Pan J, Goodheart M, Chuma S, Nakatsuji N, Page DC, Wang PJ (2005) RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029–4039
CAS
PubMed
Article
Google Scholar
Pandey RR, Homolka D, Olotu O, Sachidanandam R, Kotaja N, Pillai RS (2018) Exonuclease domain-containing 1 enhances miwi2 pirna biogenesis via its interaction with TDRD12. Cell Rep 24:3423-3432.e4
CAS
PubMed
Article
Google Scholar
Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, Kajita S, Asano Y, Kunieda T, Sachidanandam R, Chuma S, Yamanaka S, Pillai RS (2013) Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci USA 110:16492–16497
CAS
PubMed
PubMed Central
Article
Google Scholar
Parvinen M (2005) The chromatoid body in spermatogenesis. Int J Androl 28:189–201
PubMed
Article
Google Scholar
Patil VS, Anand A, Chakrabarti A, Kai T (2014) The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol 12:61
PubMed
PubMed Central
Google Scholar
Perera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC (2019) Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics 14:504–521
PubMed
PubMed Central
Article
Google Scholar
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ (2012) shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18:1446–1457
CAS
PubMed
PubMed Central
Article
Google Scholar
Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121
CAS
PubMed
PubMed Central
Article
Google Scholar
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–267
CAS
PubMed
Article
Google Scholar
Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ (2007) Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA 13:974–981
CAS
PubMed
PubMed Central
Article
Google Scholar
Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD, Lai EC (2009) A broadly conserved pathway generates 3’UTR-directed primary piRNAs. Curr Biol 19:2066–2076
CAS
PubMed
PubMed Central
Article
Google Scholar
Rosenkranz D, Han CT, Roovers EF, Zischler H, Ketting RF (2015) Piwi proteins and piRNAs in mammalian oocytes and early embryos: From sample to sequence. Genom Data 5:309–313
PubMed
PubMed Central
Article
Google Scholar
Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC (2007) Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21:1603–1608
CAS
PubMed
PubMed Central
Article
Google Scholar
Santos AC, Lehmann R (2004) Germ cell specification and migration in Drosophila and beyond. Curr Biol 14:R578–R589
CAS
PubMed
Article
Google Scholar
Saxe JP, Chen M, Zhao H, Lin H (2013) Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 32:1869–1885
CAS
PubMed
PubMed Central
Article
Google Scholar
Schoenberg DR, Maquat LE (2012) Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13:246–259
CAS
PubMed
PubMed Central
Article
Google Scholar
Schöpp T, Zoch A, Berrens RV, Auchynnikava T, Kabayama Y, Vasiliauskaitė L, Rappsilber J, Allshire RC, O’Carroll D (2020) TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nat Commun 11:3739
PubMed
PubMed Central
Article
CAS
Google Scholar
Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26:603–609
CAS
PubMed
Article
Google Scholar
Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R (2001) Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97:426–434
CAS
PubMed
Article
Google Scholar
Shiromoto Y, Kuramochi-Miyagawa S, Daiba A, Chuma S, Katanaya A, Katsumata A, Nishimura K, Ohtaka M, Nakanishi M, Nakamura T, Yoshinaga K, Asada N, Nakamura S, Yasunaga T, Kojima-Kita K, Itou D, Kimura T, Nakano T (2013) GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germline stem cells. RNA 19:803–810
CAS
PubMed
PubMed Central
Article
Google Scholar
Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19:594–601
CAS
PubMed
PubMed Central
Article
Google Scholar
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chujo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 17:775–787
CAS
PubMed
Article
Google Scholar
Shum EY, Jones SH, Shao A, Dumdie J, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-Andersen H, Wilkinson MF (2016) The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165:382–395
CAS
PubMed
PubMed Central
Article
Google Scholar
Sienski G, Dönertas D, Brennecke J (2012) Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151:964–980
CAS
PubMed
PubMed Central
Article
Google Scholar
Simkin A, Wong A, Poh YP, Theurkauf WE, Jensen JD (2013) Recurrent and recent selective sweeps in the piRNA pathway. Evolution 67:1081–1090
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith JM, Bowles J, Wilson M, Teasdale RD, Koopman P (2004) Expression of the tudor-related gene Tdrd5 during development of the male germline in mice. Gene Expr Patterns 4:701–705
CAS
PubMed
Article
Google Scholar
Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A (2008) Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15:285–297
CAS
PubMed
PubMed Central
Article
Google Scholar
Specchia V, Piacentini L, Tritto P, Fanti L, D’Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665
CAS
PubMed
Article
Google Scholar
Sun YH, Xie LH, Zhuo X, Chen Q, Ghoneim D, Zhang B, Jagne J, Yang C, Li XZ (2017) Domestic chickens activate a piRNA defense against avian leukosis virus. Elife 6:48
Google Scholar
Sun YH, Zhu J, Xie LH, Li Z, Meduri R, Zhu X, Song C, Chen C, Ricci EP, Weng Z, Li XZ (2020) Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat Cell Biol 22:200–212
CAS
PubMed
PubMed Central
Article
Google Scholar
Sun YH, Jiang F, Li XZ (2018) Disruption of Tdrd5 decouples the stepwise processing of long precursor transcripts during pachytene PIWI-interacting RNA biogenesis. Biol Reprod 99:684–685
PubMed
Article
Google Scholar
Sun YH, Wang RH, Du K, Zheng J, Xie LH, Pereira AA, Zhang C, Ricci EP, Li XZ (2021) Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2(1):5970
Article
CAS
Google Scholar
Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120:49–58
CAS
PubMed
Article
Google Scholar
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538
CAS
PubMed
PubMed Central
Article
Google Scholar
Tan M, Tol HTAV, Rosenkranz D, Roovers EF, Damen MJ, Stout TAE, Wu W, Roelen BAJ (2020) PIWIL3 forms a complex with TDRKH in mammalian oocytes. Cells 9:48
Google Scholar
Tanaka T, Hosokawa M, Vagin VV, Reuter M, Hayashi E, Mochizuki AL, Kitamura K, Yamanaka H, Kondoh G, Okawa K, Kuramochi-Miyagawa S, Nakano T, Sachidanandam R, Hannon GJ, Pillai RS, Nakatsuji N, Chuma S (2011) Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci USA 108:10579–10584
CAS
PubMed
PubMed Central
Article
Google Scholar
Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376
CAS
PubMed
PubMed Central
Article
Google Scholar
Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529
CAS
PubMed
Article
Google Scholar
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324
CAS
PubMed
Article
Google Scholar
Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA, Malone CD, Harrison E, Rosebrock A, Wakimoto BT, Fagegaltier D, Muerdter F, Hannon GJ (2013) Minotaur is critical for primary piRNA biogenesis. RNA 19:1064–1077
CAS
PubMed
PubMed Central
Article
Google Scholar
Vasileva A, Tiedau D, Firooznia A, Muller-Reichert T, Jessberger R (2009) Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19:630–639
CAS
PubMed
PubMed Central
Article
Google Scholar
Voigt F, Reuter M, Kasaruho A, Schulz EC, Pillai RS, Barabas O (2012) Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc. RNA 18:2128–2134
CAS
PubMed
PubMed Central
Article
Google Scholar
Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, Wang PJ (2015) The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev 29:617–629
CAS
PubMed
PubMed Central
Article
Google Scholar
Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19:773–781
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang H, Ma Z, Niu K, Xiao Y, Wu X, Pan C, Zhao Y, Wang K, Zhang Y, Liu N (2016) Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3’ ends in Drosophila. Development 143:530–539
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang J, Saxe JP, Tanaka T, Chuma S, Lin H (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19:640–644
CAS
PubMed
PubMed Central
Article
Google Scholar
Wasik KA, Tam OH, Knott SR, Falciatori I, Hammell M, Vagin VV, Hannon GJ (2015) RNF17 blocks promiscuous activity of PIWI proteins in mouse testes. Genes Dev 29:1403–1415
CAS
PubMed
PubMed Central
Article
Google Scholar
Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543
CAS
PubMed
Article
Google Scholar
Wenda JM, Homolka D, Yang Z, Spinelli P, Sachidanandam R, Pandey RR, Pillai RS (2017) Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA biogenesis and function. Dev Cell 41:623-637.e9
CAS
PubMed
PubMed Central
Article
Google Scholar
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD (2020) The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 52:728–739
CAS
PubMed
PubMed Central
Article
Google Scholar
Wynant N, Santos D, Vanden Broeck J (2017) The evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci Rep 7:9230
PubMed
PubMed Central
Article
CAS
Google Scholar
Xiol J, Cora E, Koglgruber R, Chuma S, Subramanian S, Hosokawa M, Reuter M, Yang Z, Berninger P, Palencia A, Benes V, Penninger J, Sachidanandam R, Pillai RS (2012) A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Mol Cell 47:970–979
CAS
PubMed
Article
Google Scholar
Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, Couté Y, Conn S, Kadlec J, Sachidanandam R, Kaksonen M, Cusack S, Ephrussi A, Pillai RS (2014) RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157:1698–1711
CAS
PubMed
Article
Google Scholar
Yabuta Y, Ohta H, Abe T, Kurimoto K, Chuma S, Saitou M (2011) TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J Cell Biol 192:781–795
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiya A, Hirano S, Matsumoto N, Dohmae N, Ishitani R, Saito K, Siomi H, Nishimasu H, Siomi MC, Nureki O (2020) Crystal structure of Drosophila Piwi. Nat Commun 11:858
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamanaka S, Siomi MC, Siomi H (2014) piRNA clusters and open chromatin structure. Mob DNA 5:22
PubMed
PubMed Central
Article
CAS
Google Scholar
Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39:6596–6607
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang Q, Li R, Lyu Q, Hou L, Liu Z, Sun Q, Liu M, Shi H, Xu B, Yin M, Yan Z, Huang Y, Liu M, Li Y, Wu L (2019) Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat Commun 10:3389
PubMed
PubMed Central
Article
CAS
Google Scholar
Yang Z, Chen KM, Pandey RR, Homolka D, Reuter M, Janeiro BK, Sachidanandam R, Fauvarque MO, McCarthy AA, Pillai RS (2016) PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Mol Cell 61:138–152
PubMed
PubMed Central
Article
CAS
Google Scholar
Yao MC, Fuller P, Xi X (2003) Programmed DNA deletion as an RNA-guided system of genome defense. Science 300:1581–1584
CAS
PubMed
Article
Google Scholar
Yi M, Chen F, Luo M, Cheng Y, Zhao H, Cheng H, Zhou R (2014) Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity. Genome Biol Evol 6:1393–1407
CAS
PubMed
PubMed Central
Article
Google Scholar
Yoshimura T, Toyoda S, Kuramochi-Miyagawa S, Miyazaki T, Miyazaki S, Tashiro F, Yamato E, Nakano T, Miyazaki J (2009) Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Dev Biol 335:216–227
CAS
PubMed
Article
Google Scholar
Yoshimura T, Watanabe T, Kuramochi-Miyagawa S, Takemoto N, Shiromoto Y, Kudo A, Kanai-Azuma M, Tashiro F, Miyazaki S, Katanaya A, Chuma S, Miyazaki JI (2018) Mouse GTSF1 is an essential factor for secondary piRNA biogenesis. EMBO Rep 19:e42054
PubMed
PubMed Central
Article
CAS
Google Scholar
Yu T, Fan K, Özata DM, Zhang G, Fu Y, Theurkauf WE, Zamore PD, Weng Z (2021) Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat Commun 12:73
CAS
PubMed
PubMed Central
Article
Google Scholar
Yu T, Koppetsch BS, Pagliarani S, Johnston S, Silverstein NJ, Luban J, Chappell K, Weng Z, Theurkauf WE (2019) The piRNA Response to Retroviral Invasion of the Koala Genome. Cell 179:632-643.e12
CAS
PubMed
PubMed Central
Article
Google Scholar
Zamparini AL, Davis MY, Malone CD, Vieira E, Zavadil J, Sachidanandam R, Hannon GJ, Lehmann R (2011) Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development 138:4039–4050
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang, H., Zhang, F., Chen, Q., Li, M., Lv, X., Xiao, Y., Zhang, Z., Hou, L., Lai, Y., Zhang, Y., Zhang, A., Gao, S., Fu, H., Xiao, W., Zhou, J., Diao, F., Shi, A., Su, Y.-Q., Zeng, W., Wu, L., and Li, J. (2021). The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nat Cell Biol
Zhang P, Kang JY, Gou LT, Wang J, Xue Y, Skogerboe G, Dai P, Huang DW, Chen R, Fu XD, Liu MF, He S (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25:193–207
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang S, Pointer B, Kelleher ES (2020) Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations. Genome Res 30:566–575
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Y, Guo R, Cui Y, Zhu Z, Zhang Y, Wu H, Zheng B, Yue Q, Bai S, Zeng W, Guo X, Zhou Z, Shen B, Zheng K, Liu M, Ye L, Sha J (2017) An essential role for PNLDC1 in piRNA 3’ end trimming and male fertility in mice. Cell Res 27:1392–1396
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Z, Koppetsch BS, Wang J, Tipping C, Weng Z, Theurkauf WE, Zamore PD (2014) Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin. EMBO J 33:536–539
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhao PP, Yao MJ, Chang SY, Gou LT, Liu MF, Qiu ZL, Yuan XB (2015) Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins. Mol Brain 8:39
PubMed
PubMed Central
Article
CAS
Google Scholar
Zheng K, Wang PJ (2012) Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 8:e1003038
CAS
PubMed
PubMed Central
Article
Google Scholar
Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, McLaughlin KJ, Stark A, Sachidanandam R, Pillai RS, Wang PJ (2010) Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci USA 107:11841–11846
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhou L, Canagarajah B, Zhao Y, Baibakov B, Tokuhiro K, Maric D, Dean J (2017) BTBD18 Regulates a Subset of piRNA-Generating Loci through Transcription Elongation in Mice. Dev Cell 40:453-466.e5
PubMed
Article
CAS
Google Scholar