Skip to main content

Advertisement

Log in

The mouse notches up another success: understanding the causes of human vertebral malformation

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The defining characteristic of all vertebrates is a spine composed of a regular sequence of vertebrae. In humans, congenital spinal defects occur with an incidence of 0.5–1 per 1,000 live births and arise when the formation of vertebral precursors in the embryo is disrupted. These precursors (somites) form in a process (somitogenesis) in which each somite is progressively separated from an unsegmented precursor tissue. In the past decade the underlying genetic mechanisms driving this complex process have been dissected using animal models, revealing that it requires the coordinated action of at least 300 genes. Deletion of many of these genes in the mouse produces phenotypes with similar vertebral defects to those observed in human congenital abnormalities. This review highlights the role that such mouse models have played in the identification of the genetic causes of the malsegmentation syndrome spondylocostal dysostosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tuysuz B, Murday VA, Patton MA, Wilkie AO, Jeffery S (2000) Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 25:419–422

    PubMed  CAS  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434

    PubMed  CAS  Google Scholar 

  • Aulehla A, Pourquie O (2010) Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2:a000869

    PubMed  Google Scholar 

  • Barrantes IB, Elia AJ, Wunsch K, Hrabe de Angelis MH, Mak TW, Rossant J, Conlon RA, Gossler A, de la Pompa JL (1999) Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 9:470–480

    PubMed  CAS  Google Scholar 

  • Berdon WE, Lampl BS, Cornier AS, Ramirez N, Turnpenny PD, Vitale MG, Seimon LP, Cowles RA (2011) Clinical and radiological distinction between spondylothoracic dysostosis (Lavy-Moseley syndrome) and spondylocostal dysostosis (Jarcho-Levin syndrome). Pediatr Radiol 41:384–388

    PubMed  Google Scholar 

  • Bessho Y, Miyoshi G, Sakata R, Kageyama R (2001a) Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6:175–185

    PubMed  CAS  Google Scholar 

  • Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R (2001b) Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15:2642–2647

    PubMed  CAS  Google Scholar 

  • Brent AE, Tabin CJ (2002) Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 12:548–557

    PubMed  CAS  Google Scholar 

  • Bruckner K, Perez L, Clausen H, Cohen S (2000) Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406:411–415

    PubMed  CAS  Google Scholar 

  • Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, Krumlauf R, Hattersley AT, Ellard S, Turnpenny PD (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24:438–441

    PubMed  CAS  Google Scholar 

  • Burgess R, Rawls A, Brown D, Bradley A, Olson EN (1996) Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384:570–573

    PubMed  CAS  Google Scholar 

  • Bussen M, Petry M, Schuster-Gossler K, Leitges M, Gossler A, Kispert A (2004) The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev 18:1209–1221

    PubMed  CAS  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    PubMed  CAS  Google Scholar 

  • Carter M, Chen X, Slowinska B, Minnerath S, Glickstein S, Shi L, Campagne F, Weinstein H, Ross ME (2005) Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci USA 102:12843–12848

    PubMed  CAS  Google Scholar 

  • Chan T, Kondow A, Hosoya A, Hitachi K, Yukita A, Okabayashi K, Nakamura H, Ozawa H, Kiyonari H, Michiue T, Ito Y, Asashima M (2007) Ripply2 is essential for precise somite formation during mouse early development. FEBS Lett 581:2691–2696

    PubMed  CAS  Google Scholar 

  • Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL (2011) Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 20:905–916

    PubMed  CAS  Google Scholar 

  • Chen J, Kang L, Zhang N (2005) Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis. Genesis 43:196–204

    PubMed  CAS  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol (Berl) 208:333–350

    Google Scholar 

  • Christ B, Huang R, Scaal M (2007) Amniote somite derivatives. Dev Dyn 236:2382–2396

    PubMed  CAS  Google Scholar 

  • Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites. Development 121:1533–1545

    PubMed  CAS  Google Scholar 

  • Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquie O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341

    PubMed  CAS  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    PubMed  CAS  Google Scholar 

  • Dale JK, Malapert P, Chal J, Vilhais-Neto G, Maroto M, Johnson T, Jayasinghe S, Trainor P, Herrmann B, Pourquie O (2006) Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 10:355–366

    PubMed  CAS  Google Scholar 

  • Davy A, Soriano P (2007) Ephrin-B2 forward signaling regulates somite patterning and neural crest cell development. Dev Biol 304:182–193

    PubMed  CAS  Google Scholar 

  • Delfini MC, Dubrulle J, Malapert P, Chal J, Pourquie O (2005) Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci USA 102:11343–11348

    PubMed  CAS  Google Scholar 

  • Dequeant ML, Pourquie O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9:370–382

    PubMed  CAS  Google Scholar 

  • Duband JL, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP (1987) Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104:1361–1374

    PubMed  CAS  Google Scholar 

  • Duffy SL, Coulthard MG, Spanevello MD, Herath NI, Yeadon TM, McCarron JK, Carter JC, Tonks ID, Kay GF, Phillips GE, Boyd AW (2008) Generation and characterization of EphA1 receptor tyrosine kinase reporter knockout mice. Genesis 46:553–561

    PubMed  CAS  Google Scholar 

  • Dunty WC Jr, Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP (2008) Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135:85–94

    PubMed  CAS  Google Scholar 

  • Dunwoodie SL (2009) The role of Notch in patterning the human vertebral column. Curr Opin Genet Dev 19:329–337

    PubMed  CAS  Google Scholar 

  • Dunwoodie SL, Henrique D, Harrison SM, Beddington RS (1997) Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124:3065–3076

    PubMed  CAS  Google Scholar 

  • Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806

    PubMed  CAS  Google Scholar 

  • Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL (1998) Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377–381

    PubMed  CAS  Google Scholar 

  • Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR (2003) Mutations in SOX2 cause anophthalmia. Nat Genet 33:461–463

    PubMed  CAS  Google Scholar 

  • Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249

    PubMed  CAS  Google Scholar 

  • Galceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R (2004) LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 18:2718–2723

    PubMed  CAS  Google Scholar 

  • Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, Sparrow DB, Kremmer E, Dunwoodie SL, Klein T, Gossler A (2007) Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol 178:465–476

    PubMed  CAS  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  • Giampietro PF, Raggio CL, Blank RD (1999) Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet 83:164–177

    PubMed  CAS  Google Scholar 

  • Gibb S, Maroto M, Dale JK (2010) The segmentation clock mechanism moves up a notch. Trends Cell Biol 20:593–600

    PubMed  CAS  Google Scholar 

  • Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319

    PubMed  CAS  Google Scholar 

  • Gossler A, Hrabe de Angelis M (1998) Somitogenesis. Curr Top Dev Biol 38:225–287

    PubMed  CAS  Google Scholar 

  • Gruneberg H (1961) Genetical studies on the skeleton of the mouse XXIX. PUDGY. Genet Res 2:384–393

    Google Scholar 

  • Gucev ZS, Tasic V, Pop-Jordanova N, Sparrow DB, Dunwoodie SL, Ellard S, Young E, Turnpenny PD (2010) Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: Negative mutation analysis of DLL3, MESP2, HES7, and LFNG. Am J Med Genet A 152A:1378–1382

    PubMed  Google Scholar 

  • Hahn KL, Johnson J, Beres BJ, Howard S, Wilson-Rawls J (2005) Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 132:817–828

    PubMed  CAS  Google Scholar 

  • Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4:786–797

    PubMed  CAS  Google Scholar 

  • Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien KR, Sussman DJ, Wynshaw-Boris A (2002) Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129:5827–5838

    PubMed  CAS  Google Scholar 

  • Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    PubMed  CAS  Google Scholar 

  • Heston WE (1951) The “vestigial tail” mouse; a new recessive mutation. J Hered 42:71–74

    PubMed  CAS  Google Scholar 

  • Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G (2000) Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2:515–520

    PubMed  CAS  Google Scholar 

  • Horikawa K, Radice G, Takeichi M, Chisaka O (1999) Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 215:182–189

    PubMed  CAS  Google Scholar 

  • Hoyne GF, Chapman G, Sontani Y, Pursglove SE, Dunwoodie SL (2011) A cell autonomous role for the Notch ligand Delta-like 3 in alphabeta T-cell development. Immunol Cell Biol. doi:10.1038/icb.2010.154

  • Hrabe de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721

    PubMed  CAS  Google Scholar 

  • Huxley TH (1956) General Natural History. Medical Times and Gazette 13:27–30

    Google Scholar 

  • Jarcho S, Levin PM (1938) Hereditary malformation of the vertebral bodies. Bull Johns Hopkins Hosp 62:216–226

    Google Scholar 

  • Kaufman MH, Bard JBL (1999) Somites and their derivatives (muscles, dermis and vertebrae). In: Kaufman MH, Bard JB (eds) The anatomical basis of mouse development. Academic Press, Edinburgh, pp 51–59

    Google Scholar 

  • Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    PubMed  CAS  Google Scholar 

  • Koizumi K, Nakajima M, Yuasa S, Saga Y, Sakai T, Kuriyama T, Shirasawa T, Koseki H (2001) The role of presenilin 1 during somite segmentation. Development 128:1391–1402

    PubMed  CAS  Google Scholar 

  • Kokubu C, Heinzmann U, Kokubu T, Sakai N, Kubota T, Kawai M, Wahl MB, Galceran J, Grosschedl R, Ozono K, Imai K (2004) Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 131:5469–5480

    PubMed  CAS  Google Scholar 

  • Koo BK, Lim HS, Song R, Yoon MJ, Yoon KJ, Moon JS, Kim YW, Kwon MC, Yoo KW, Kong MP, Lee J, Chitnis AB, Kim CH, Kong YY (2005) Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132:3459–3470

    PubMed  CAS  Google Scholar 

  • Krakow D, Robertson SP, King LM, Morgan T, Sebald ET, Bertolotto C, Wachsmann-Hogiu S, Acuna D, Shapiro SS, Takafuta T, Aftimos S, Kim CA, Firth H, Steiner CE, Cormier-Daire V, Superti-Furga A, Bonafe L, Graham JM Jr, Grix A, Bacino CA, Allanson J, Bialer MG, Lachman RS, Rimoin DL, Cohn DH (2004) Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 36:405–410

    PubMed  CAS  Google Scholar 

  • Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL (1998) The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93:985–996

    PubMed  CAS  Google Scholar 

  • Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278

    PubMed  CAS  Google Scholar 

  • Kusumi K, Mimoto MS, Covello KL, Beddington RS, Krumlauf R, Dunwoodie SL (2004) Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis 39:115–121

    PubMed  CAS  Google Scholar 

  • Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang L-T, Boulter J, Sun YE, Kintner C, Weinmaster G (2005) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170:983–992

    PubMed  CAS  Google Scholar 

  • Lander ES (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236:1567–1570

    PubMed  CAS  Google Scholar 

  • Li T, Ma G, Cai H, Price DL, Wong PC (2003) Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 23:3272–3277

    PubMed  CAS  Google Scholar 

  • Linask KK, Ludwig C, Han MD, Liu X, Radice GL, Knudsen KA (1998) N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 202:85–102

    PubMed  CAS  Google Scholar 

  • MacDonald BT, Adamska M, Meisler MH (2004) Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131:2543–2552

    PubMed  CAS  Google Scholar 

  • Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CV, Arnheiter H, Pachnis V (2003) The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 130:4655–4664

    PubMed  CAS  Google Scholar 

  • Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28

    PubMed  CAS  Google Scholar 

  • Mansouri A, Voss AK, Thomas T, Yokota Y, Gruss P (2000) Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development 127:2251–2258

    PubMed  CAS  Google Scholar 

  • Martinez-Frias ML, Bermejo E, Paisan L, Martin M, Egues J, Lopez JA, Martinez S, Orbea C, Cucalon F, Gairi JM et al (1994) Severe spondylocostal dysostosis associated with other congenital anomalies: a clinical/epidemiologic analysis and description of ten cases from the Spanish registry. Am J Med Genet 51:203–212

    PubMed  CAS  Google Scholar 

  • Maruhashi M, Van De Putte T, Huylebroeck D, Kondoh H, Higashi Y (2005) Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 234:332–338

    PubMed  CAS  Google Scholar 

  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    PubMed  CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    PubMed  CAS  Google Scholar 

  • Morimoto M, Takahashi Y, Endo M, Saga Y (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435:354–359

    PubMed  CAS  Google Scholar 

  • Morimoto M, Sasaki N, Oginuma M, Kiso M, Igarashi K, Aizaki K, Kanno J, Saga Y (2007) The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134:1561–1569

    PubMed  CAS  Google Scholar 

  • Mortier GR, Lachman RS, Bocian M, Rimoin DL (1996) Multiple vertebral segmentation defects: analysis of 26 new patients and review of the literature. Am J Med Genet 61:310–319

    PubMed  CAS  Google Scholar 

  • Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97:1618–1623

    PubMed  CAS  Google Scholar 

  • Naiche LA, Holder N, Lewandoski M (2011) FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci USA 108:4018–4023

    PubMed  CAS  Google Scholar 

  • Needham J (1959) A history of embryology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    PubMed  CAS  Google Scholar 

  • Ng SB, Nickerson DA, Bamshad MJ, Shendure J (2010) Massively parallel sequencing and rare disease. Hum Mol Genet 19:R119–R124

    PubMed  CAS  Google Scholar 

  • Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    PubMed  CAS  Google Scholar 

  • Niwa Y, Masamizu Y, Liu T, Nakayama R, Deng CX, Kageyama R (2007) The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev Cell 13:298–304

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Muller F, Meyer DB (1980) The human vertebral column at the end of the embryonic period proper. 1. The column as a whole. J Anat 131:565–575

    PubMed  Google Scholar 

  • Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    PubMed  CAS  Google Scholar 

  • Offiah A, Alman B, Cornier AS, Giampietro PF, Tassy O, Wade A, Turnpenny PD (2010) Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae. Am J Med Genet A 152A:1357–1371

    PubMed  Google Scholar 

  • Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879

    PubMed  CAS  Google Scholar 

  • Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak TW, Honjo T (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121:3291–3301

    PubMed  CAS  Google Scholar 

  • Ozbudak EM, Pourquie O (2008) The vertebrate segmentation clock: the tip of the iceberg. Curr Opin Genet Dev 18:317–323

    PubMed  CAS  Google Scholar 

  • Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132:3859–3871

    PubMed  CAS  Google Scholar 

  • Purandare SM, Ware SM, Kwan KM, Gebbia M, Bassi MT, Deng JM, Vogel H, Behringer RR, Belmont JW, Casey B (2002) A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129:2293–2302

    PubMed  CAS  Google Scholar 

  • Purkiss SB, Driscoll B, Cole WG, Alman B (2002) Idiopathic scoliosis in families of children with congenital scoliosis. Clin Orthop Relat Res (401):27-31

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78

    PubMed  CAS  Google Scholar 

  • Reed SC (1937) The inheritance and expression of fused, a new mutation in the house mouse. Genetics 22:1–13

    PubMed  CAS  Google Scholar 

  • Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455

    PubMed  CAS  Google Scholar 

  • Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839

    PubMed  CAS  Google Scholar 

  • Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225

    PubMed  CAS  Google Scholar 

  • Satoh W, Gotoh T, Tsunematsu Y, Aizawa S, Shimono A (2006) Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133:989–999

    PubMed  CAS  Google Scholar 

  • Schubert FR, Tremblay P, Mansouri A, Faisst AM, Kammandel B, Lumsden A, Gruss P, Dietrich S (2001) Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev Dyn 222:506–521

    PubMed  CAS  Google Scholar 

  • Serneels L, Dejaegere T, Craessaerts K, Horre K, Jorissen E, Tousseyn T, Hebert S, Coolen M, Martens G, Zwijsen A, Annaert W, Hartmann D, De Strooper B (2005) Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo. Proc Natl Acad Sci USA 102:1719–1724

    PubMed  CAS  Google Scholar 

  • Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 100:5234–5239

    PubMed  CAS  Google Scholar 

  • Sirbu IO, Duester G (2006) Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat Cell Biol 8:271–277

    PubMed  CAS  Google Scholar 

  • Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israel A, Heiss NS, Klauck SM, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D’Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick SJ, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405:466–472

    PubMed  CAS  Google Scholar 

  • Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37

    PubMed  CAS  Google Scholar 

  • Sparrow DB, Chapman G, Turnpenny PD, Dunwoodie SL (2007) Disruption of the somitic molecular clock causes abnormal vertebral segmentation. Birth Defects Res C Embryo Today 81:93–110

    PubMed  CAS  Google Scholar 

  • Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766

    PubMed  CAS  Google Scholar 

  • Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL (2010) Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 18:674–679

    PubMed  CAS  Google Scholar 

  • Stern CD, Keynes RJ (1987) Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99:261–272

    PubMed  CAS  Google Scholar 

  • Suriben R, Kivimae S, Fisher DA, Moon RT, Cheyette BN (2009) Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 41:977–985

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Yasuhiko Y, Kitajima S, Kanno J, Saga Y (2007) Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation. Dev Biol 304:593–603

    PubMed  CAS  Google Scholar 

  • Takahashi J, Ohbayashi A, Oginuma M, Saito D, Mochizuki A, Saga Y, Takada S (2010) Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol 342:134–145

    PubMed  CAS  Google Scholar 

  • Tam PP (1981) The control of somitogenesis in mouse embryos. J Embryol Exp Morphol 65(Suppl):103–128

    PubMed  Google Scholar 

  • Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FD, Murrell D, Clarke RA (2008) Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat 29:1017–1027

    PubMed  CAS  Google Scholar 

  • Turnpenny PD (2010) Abnormal vertebral segmentation (or segmentation defects of the vertebrae) and spondylocostal dysostosis. In: Kusumi K, Dunwoodie SL (eds) The genetics and development of scolisos. Springer, New York

    Google Scholar 

  • Turnpenny PD, Young E (2009) Spondylocostal dysostosis, autosomal recessive. in: genereviews at genetests: medical genetics information resource (database online). University of Washington, Seattle

    Google Scholar 

  • Turnpenny PD, Thwaites RJ, Boulos FN (1991) Evidence for variable gene expression in a large inbred kindred with autosomal recessive spondylocostal dysostosis. J Med Genet 28:27–33

    PubMed  CAS  Google Scholar 

  • Turnpenny PD, Bulman MP, Frayling TM, Abu-Nasra TK, Garrett C, Hattersley AT, Ellard S (1999) A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1–q13.3. Am J Hum Genet 65:175–182

    PubMed  CAS  Google Scholar 

  • Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S (2003) Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 40:333–339

    PubMed  CAS  Google Scholar 

  • Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquie O, Kusumi K, Dunwoodie S (2007) Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn 236:1456–1474

    PubMed  CAS  Google Scholar 

  • Verbout AJ (1976) A critical review of the ‘neugliederung’ concept in relation to the development of the vertebral column. Acta Biotheor 25:219–258

    PubMed  CAS  Google Scholar 

  • Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X (2005) Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 132:4235–4245

    PubMed  CAS  Google Scholar 

  • Vermot J, Gallego Llamas J, Fraulob V, Niederreither K, Chambon P, Dolle P (2005) Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308:563–566

    PubMed  CAS  Google Scholar 

  • Vilhais-Neto GC, Maruhashi M, Smith KT, Vasseur-Cognet M, Peterson AS, Workman JL, Pourquie O (2010) Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463:953–957

    PubMed  CAS  Google Scholar 

  • Wahl MB, Deng C, Lewandoski M, Pourquie O (2007) FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134:4033–4041

    PubMed  CAS  Google Scholar 

  • Watabe-Rudolph M, Schlautmann N, Papaioannou VE, Gossler A (2002) The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mech Dev 119:251–256

    PubMed  CAS  Google Scholar 

  • Watanabe T, Takahashi Y (2010) Tissue morphogenesis coupled with cell shape changes. Curr Opin Genet Dev 20:443–447

    PubMed  CAS  Google Scholar 

  • Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74:1249–1254

    PubMed  CAS  Google Scholar 

  • William DA, Saitta B, Gibson JD, Traas J, Markov V, Gonzalez DM, Sewell W, Anderson DM, Pratt SC, Rappaport EF, Kusumi K (2007) Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymal stem cell model. Dev Biol 305:172–186

    PubMed  CAS  Google Scholar 

  • Williams LW (1910) The somites of the chick. Am J Anat 11:55–100

    Google Scholar 

  • Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, Schneider A, Messina M, Turnpenny PD, Fantes JA, van Heyningen V, FitzPatrick DR (2006) Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet 15:1413–1422

    PubMed  CAS  Google Scholar 

  • Wilm B, Dahl E, Peters H, Balling R, Imai K (1998) Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci USA 95:8692–8697

    PubMed  CAS  Google Scholar 

  • Winnier GE, Hargett L, Hogan BL (1997) The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 11:926–940

    PubMed  CAS  Google Scholar 

  • Wynne-Davies R (1975) Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J Med Genet 12:280–288

    PubMed  CAS  Google Scholar 

  • Xu J, Norton CR, Gridley T (2006) Not all lunatic fringe null female mice are infertile. Development 133:579 author reply 579-580

    PubMed  CAS  Google Scholar 

  • Xuan JY, Hughes-Benzie RM, MacKenzie AE (1999) A small interstitial deletion in the GPC3 gene causes Simpson-Golabi-Behmel syndrome in a Dutch-Canadian family. J Med Genet 36:57–58

    PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Conlon RA, Rossant J (1992) Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Dev Biol 152:75–88

    PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8:3032–3044

    PubMed  CAS  Google Scholar 

  • Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16:927–942

    PubMed  CAS  Google Scholar 

  • Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y (2006) Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci USA 103:3651–3656

    PubMed  CAS  Google Scholar 

  • Yoon JK, Wold B (2000) The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev 14:3204–3214

    PubMed  CAS  Google Scholar 

  • Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F (1997) The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192

    PubMed  CAS  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394:374–377

    PubMed  CAS  Google Scholar 

  • Zhang N, Norton CR, Gridley T (2002) Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis 33:21–28

    PubMed  CAS  Google Scholar 

  • Zhao X, Duester G (2009) Effect of retinoic acid signaling on Wnt/beta-catenin and FGF signaling during body axis extension. Gene Expr Patterns 9:430–435

    PubMed  CAS  Google Scholar 

  • Zoltewicz JS, Stewart NJ, Leung R, Peterson AS (2004) Atrophin 2 recruits histone deacetylase and is required for the function of multiple signaling centers during mouse embryogenesis. Development 131:3–14

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research reported from our laboratory was performed with the support of project grants from the National Health and Medical Research Council (NHMRC: 142006, 404804, 635500) and the Australian Research Council (DP1094119); and research fellowships to SLD (Pfizer Foundation Australia and NHMRC 514900), GC (NHMRC 158043 and Cancer Institute of NSW 06/ECF/1-03), and DBS (Westfield-Belconnen Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally L. Dunwoodie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparrow, D.B., Chapman, G. & Dunwoodie, S.L. The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome 22, 362–376 (2011). https://doi.org/10.1007/s00335-011-9335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9335-5

Keywords

Navigation