Vegetation History and Archaeobotany

, Volume 24, Issue 2, pp 253–266 | Cite as

Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot

  • Tove Hultberg
  • Marie-José Gaillard
  • Britt Grundmann
  • Matts Lindbladh
Original Article

Abstract

The Hornsö–Allgunnen area in south-eastern Sweden has been known as a biodiversity hotspot for insects for about a century and is considered to host the most species-rich insect fauna in northern Europe. Several hypotheses for the causes behind this biodiversity have been put forward, but never tested for more than small parts of the area. We analyse here the possible role of the area’s vegetation-cover history, in particular vegetation openness. We use pollen data from three sites in the Hornsö–Allgunnen area and apply the recently developed Landscape Reconstruction Algorithm (LRA) for quantitative reconstruction of past vegetation abundance at the local spatial scale. The study suggests that the area was dominated by diverse, relatively open forest during at least the last 3,000 years. Several tree taxa, such as Pinus, Betula and Quercus that were all suggested to be important for the present diversity, have a long continuity at the local spatial scale and were common until recently. Small proportions of anthropogenic pollen indicators were found, suggesting small-scale agriculture, which however did not considerably affect the area’s overall tree species composition. We propose that fire was the main cause for the open character of the area’s wooded landscape during the Holocene and, indirectly, an important agent behind the high insect diversity. However, the richness of insects was (and is) most likely also favoured by the long continuity of Quercus, and by the warm and dry local climate. The LRA provides a more realistic estimate of the taxa composition as compared to pollen percentages alone, both for arboreal and non-arboreal taxa. The differences between pollen percentages and LRA-estimates of plant abundance can be important to consider when causes behind high modern diversity are interpreted from fossil pollen records. Our results demonstrate the benefits of using the LRA along with traditional pollen percentages.

Keywords

Pinus sylvestris Quercus robur Saproxylic beetles Forest openness Southern Sweden 

Notes

Acknowledgments

The authors thank Formas (diary number 215-2007-645) for funding, Gina Hannon for help with plant macro-fossil analysis, Shinya Sugita for supplying us with the computer programmes to implement the REVEALS and LOVE models, and Qiao-Yu Cui for software support. We also thank Thomas Giesecke and one anonymous reviewer for valuable comments that helped us to substantially improve earlier versions of the manuscript.

Supplementary material

334_2014_469_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2697 kb)

References

  1. Alexandersson H, Eggertsson Karlström C (2001) Temperaturen och nederbörden i Sverige 1961–1990. Referensnormaler—utgåva 2. SMHI, NorrköpingGoogle Scholar
  2. Andersen ST (1972) The differential pollen productivity of trees and its significance for the interpretation of a pollen diagram from a forested region. In: Birks HJ, West RG (eds) Quaternary plant ecology. Blackwell Scientific, OxfordGoogle Scholar
  3. Anonymous (2006) Beslut och skötselplan för naturreservatet Allgunnen, Högsby och Nybro kommun, Kalmar län. KalmarGoogle Scholar
  4. Anonymous (2008) Ekoparksplan Hornsö. SveaskogGoogle Scholar
  5. Anonymous (2011) Statistisk årsbok 2011Google Scholar
  6. Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved: a critical review for temperate and boreal forests. For Ecol Man 254:1–15CrossRefGoogle Scholar
  7. Berglund BE (1991) The cultural landscape during 6000 years in southern Sweden: the Ystad project. Ecological bulletin, vol 41. Munksgaard, CopenhagenGoogle Scholar
  8. Björse G, Bradshaw R (1998) 2000 years of forest dynamics in southern Sweden: suggestions for forest management. For Ecol Man 104:15–26CrossRefGoogle Scholar
  9. Björse G, Bradshaw RHW, Michelson DB (1996) Calibration of regional pollen data to construct maps of former forest types in southern Sweden. J Paleolimnol 16:67–78CrossRefGoogle Scholar
  10. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochron 5:512–518CrossRefGoogle Scholar
  11. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecol 86(7):1,679–1,686CrossRefGoogle Scholar
  12. Broström A, Sugita S, Gaillard M-J (2004) Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene 14:368–381CrossRefGoogle Scholar
  13. Broström A, Sugita S, Gaillard M-J, Pilesjö P (2005) Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:252–262CrossRefGoogle Scholar
  14. Brunius J, Ferm O (1990) Handbörd och Stranda. Riksantikvarieämbetet, StockholmGoogle Scholar
  15. Bunting MJ, Gaillard M-J, Sugita S, Middleton R, Broström A (2004) Vegetation structure and pollen source area. Holocene 15:651–660CrossRefGoogle Scholar
  16. Campbell ID (1999) Quaternary pollen taphonomy: examples of differential redeposition and differential preservation. Palaeogeogr Palaeoclimatol Palaeoecol 149:245–256CrossRefGoogle Scholar
  17. Canham CD, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variations in light transmission by canopy trees. Can J For Res 24:337–349CrossRefGoogle Scholar
  18. Cui Q (2013) Fire history in the hemiboreal and southern boreal zones of southern Sweden during 11,000 years. Relationships with past vegetation composition and human activities and implications for biodiversity issues. Linnaeus University Dissertations No 155/2013, Linnaeus University PressGoogle Scholar
  19. Cui Q, Gaillard M-J, Lemdahl G, Sugita S, Greisman A, Jacobson GL, Olsson F (2013) The role of tree composition in Holocene fire history of the hemiboreal and southern boreal zones of southern Sweden, as revealed by the application of the Landscape Reconstruction Algorithm: implications for biodiversity and climate-change issues. Holocene 23:1,745–1,761CrossRefGoogle Scholar
  20. Dahlberg A, Stokland JN (2004) Vedlevande arters krav på substrat. Skogsstyrelsen, JönköpingGoogle Scholar
  21. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912CrossRefGoogle Scholar
  22. Diekmann M (1996) Ecological behaviour of deciduous hardwood trees in boreo-nemoral Sweden in relation to light and soil conditions. For Ecol Man 86:1–14CrossRefGoogle Scholar
  23. Digerfeldt G (1972) The postglacial development of Lake Trummen, Sweden. Regional vegetation history, water level changes and paleo limnology. Folia Limnol Scand 1972:1–104Google Scholar
  24. Ehnström B, Axelsson R (2002) Insektsgnag i bark och ved. Artdatabanken, SLU, UppsalaGoogle Scholar
  25. Eliasson P, Nilsson SG (2002) You should hate young oaks and young noblemen: the environmental history of oaks in eighteenth- and ninetheenth-century Sweden. Environ Hist 7:657–675Google Scholar
  26. Eriksson H, Franzén O (1969) Högsbyboken. Högsby kommun, HögsbyGoogle Scholar
  27. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. The Blackburn Press, CaldwellGoogle Scholar
  28. Ferm O, Rahmqvist S, Thor L (1987) Möre. Norra och Södra Möre. Riksantikvarieämbetet, StockholmGoogle Scholar
  29. Foster DR (2002) Insights from historical geography to ecology and conservation: lessons from the New England landscape. J Biogeogr 29:1,269–1,275CrossRefGoogle Scholar
  30. Fredén C (2002) Berg och jord. Sveriges nationalatlas. Lantmäteriverket, GävleGoogle Scholar
  31. Fredh D (2012) The impact of past land-use change on high-resolution pollen data. Lund University, LundGoogle Scholar
  32. Gaillard M-J, Sugita S, Bunting J et al (2008) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Veget Hist Archaeobot 17:419–443CrossRefGoogle Scholar
  33. Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. J Veget Sci 4:737–744CrossRefGoogle Scholar
  34. Hannon G, Niklasson M, Brunet J, Eliasson P, Lindbladh M (2010) How long has the ‘hotspot’ been ‘hot’? Past stand-scale structures at Siggaboda nature reserve in southern Sweden. Biodivers Conserv 19:2,167–2,187CrossRefGoogle Scholar
  35. Hellman SEV, Gaillard M-J, Broström A, Sugita S (2008a) The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. J Quat Sci 23:21–42CrossRefGoogle Scholar
  36. Hellman SEV, Gaillard M-J, Broström A, Sugita S (2008b) Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model. Veg Hist Archaeobot 17:445–459CrossRefGoogle Scholar
  37. Hellman SEV, Bunting MJ, Gaillard M-J (2009a) Relevant source area of pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: a simulation approach. Rev Palaeobot Palynol 153:245–258CrossRefGoogle Scholar
  38. Hellman SEV, Gaillard M-J, Bunting MJ, Mazier F (2009b) Estimating the relevant source area of pollen in the past cultural landscapes of southern Sweden: a forward modelling approach. Rev Palaeobot Palynol 153:259–271CrossRefGoogle Scholar
  39. Jacobson GL, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96CrossRefGoogle Scholar
  40. Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764CrossRefGoogle Scholar
  41. Lagerås P, Jansson K, Vestbö A (1995) Land-use history of the Axlarp area in the Småland uplands, southern Sweden: palaeoecological and archaeological investigations. Veg Hist Archaeobot 4:223–234CrossRefGoogle Scholar
  42. Lindbladh M, Foster DR (2010) Dynamics of long-lived foundation species: the history of Quercus in southern Scandinavia. J Ecol 98:1,330–1,345CrossRefGoogle Scholar
  43. Lindbladh M, Niklasson M, Nilsson SG (2003) Long-time record of fire and open canopy in a high biodiversity forest in southeast Sweden. Biol Conserv 114:231–243CrossRefGoogle Scholar
  44. Lindbladh M, Fraver S, Edvardsson J, Felton A (2013) Past forest composition, structures and processes: how paleoecology can contribute to forest conservation. Biol Conserv 168:116–127CrossRefGoogle Scholar
  45. Lindhe A, Lindelöw Å, Åsenbland N (2005) Saproxylic beetles in standing dead wood density in relation to substrate sun-exposure and diameter. Biodivers Conserv 14:3,033–3,053CrossRefGoogle Scholar
  46. Mazier F, Broström A, Gaillard M-J, Sugita S, Vittoz P, Buttler A (2008) Pollen productivity estimates and relevant source area of pollen for selected plant taxa in the pasture woodland landscape of the Jura Mountains (Switzerland). Veget Hist Archaeobot 17:479–495CrossRefGoogle Scholar
  47. Mazier F, Gaillard M-J, Kuneš P, Sugita S, Trondman A-K, Broström A (2012) Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech quaternary palynological database. Rev Palaeobot Palynol 187:38–49CrossRefGoogle Scholar
  48. Messier C, Bellefleur P (1988) Light quantity and quality on the forest floor of pioneer and climax stages in a birch–beech–sugar maple stand. Can J For Res 18:615–622CrossRefGoogle Scholar
  49. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  50. Naturcentrum (2009) Vedskalbaggar på brandfält i Hornsö. StenungsundGoogle Scholar
  51. Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes around AD 1800—an attempt to validate the POLLSCAPE model. J Biogeogr 31:1,693–1,709CrossRefGoogle Scholar
  52. Nielsen AB, Odgaard BV (2010) Quantitative landscape dynamics in Denmark through the last three millenia based on the Landscape Reconstruction Algorithm. Veg Hist Archaeobot 19:375–387CrossRefGoogle Scholar
  53. Nielsen AB, Sugita S (2005) Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene 15:1,006–1,020CrossRefGoogle Scholar
  54. Niklasson M (2011) Brandhistorik i sydöstra Sverige. Länsstyrelsen Kalmar län, KalmarGoogle Scholar
  55. Niklasson M, Drakenberg B (2001) A 600-year tree-ring fire history from Norra Kvills National Park, southern Sweden: implications for conservation strategies in the hemiboreal zone. Biol Conserv 101:63–71CrossRefGoogle Scholar
  56. Niklasson M, Lindbladh M, Björkman L (2002) A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus-Picea forest. J Veg Sci 13:765–774Google Scholar
  57. Niklasson M, Drobyshev I, Zielonka T (2010a) A 400-year history of fires on islands in south-east Sweden. Int J Wildland Fire 19:1,050–1,058CrossRefGoogle Scholar
  58. Niklasson M, Zin E, Zielonka T, Feijen M, Korczyk AF, Churski M, Samojlik T, Jedrzejewska B, Gutowski JM, Brzeziecki B (2010b) A 350-year tree-ring fire record from Bialowieza Primeval Forest, Poland: implications for Central European lowland fire history. J Ecol 98:1,319–1,329CrossRefGoogle Scholar
  59. Nilsson SG, Huggert L (2001) Vedinsektsfaunan i Hornsö - Allgunnenområdet i östra Småland. Länsstyrelsen Kalmar län, KalmarGoogle Scholar
  60. Nilsson L, Isendahl P, Nilsson Eriksson B (1995) Odlingslandskapet i Kalmar län - bevarandeprogram. Högsby kommun. Länsstyrelsen i Kalmar län, KalmarGoogle Scholar
  61. Nilsson SG, Niklasson M, Hedin J, Eliasson P, Ljungberg H (2006) Biodiversity and sustainable forestry in changing landscapes-principles and southern Sweden as an example. J Sustain For 21:11–43CrossRefGoogle Scholar
  62. Ohlson M, Brown KJ, Birks HJB et al (2011) Invasion of Norway spruce diversifies the fire regime in boreal European forests. J Ecol 99:395–403Google Scholar
  63. Olsson F, Gaillard M-J, Lemdahl G et al (2010) A continuous record of fire covering the last 10,500 calendar years from southern Sweden: the role of climate and human activities. Palaeogeogr Palaeoclimatol Palaeoecol 291:128–141CrossRefGoogle Scholar
  64. Overballe-Petersen MV, Bradshaw RHW (2011) The selection of small forest hollows for pollen analysis in boreal and temperate forest regions. Palynology 35:146–153CrossRefGoogle Scholar
  65. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  66. SGU (2009a) Cartographic material, map of bedrock. SGU (Geological Survey of Sweden), UppsalaGoogle Scholar
  67. SGU (2009b) Cartographic material, map of soil types. SGU (Geological Survey of Sweden), UppsalaGoogle Scholar
  68. Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann For Sci 61:629–641CrossRefGoogle Scholar
  69. Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, StrasbourgGoogle Scholar
  70. Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  71. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229CrossRefGoogle Scholar
  72. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257CrossRefGoogle Scholar
  73. Sugita S, Galliard MJ, Hellman S, Broström A (2007) Model-based reconstruction of vegetation and landscape using fossil pollen. Proceedings of the 35th international conference on computer applications and quantitative methods in archaeology (CAA), BerlinGoogle Scholar
  74. Sugita S, Parshall T, Calcote R, Walker K (2010) Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat Res 74:289–300CrossRefGoogle Scholar
  75. Tryterud E (2003) Forest fire history in Norway: from fire-disturbed pine forests to fire-free spruce forests. Ecography 26:161–170CrossRefGoogle Scholar
  76. Valdemardotter Å (2001) Vegetation development and fire history in a long term perspective at Ekenäs in the Hornsö area. Southern Swedish Forest Research Centre, Swedish Agricultural University, AlnarpGoogle Scholar
  77. Wäglind J (2004) En översiktlig brandhistorisk analys av Storasjöområdets naturreservat, Kronobergs län. MSc Thesis M16, University of Kalmar, KalmarGoogle Scholar
  78. Wallenius TH, Lilja S, Kuuluvainen T (2007) Fire history and tree species composition in managed Picea abies stands in southern Finland: implications for restoration. For Ecol Man 250:89–95CrossRefGoogle Scholar
  79. Wardenaar ECP (1987) A new hand tool for cutting peat profiles. Can J Bot 65:1,772–1,773CrossRefGoogle Scholar
  80. Webb T, Howe SE, Bradshaw RHW, Heide KM (1981) Estimating plant abundances from pollen percentages: the use of regression analysis. Rev Palaeobot Palynol 34:269–300CrossRefGoogle Scholar
  81. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1,261–1,265CrossRefGoogle Scholar
  82. Willis KJ, Araujo MB, Bennett KD, Figueroa-Rangel B, Froyd CA, Myers N (2007) How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Phil Trans R Soc B 362:175–186CrossRefGoogle Scholar
  83. Wirth C, Schulze E-D, Schulze W et al (1999) Above-ground biomass and structure of pristine siberian scots pine forests as controlled by competition and fire. Oecologia 121:66–80CrossRefGoogle Scholar
  84. www.raa.se (2011) Swedish National Heritage Board web page. Accessed 14 April 2011
  85. www.sgu.se (2010) Geological Survey of Sweden web page. Accessed 5 Oct 2010
  86. www.smhi.se (2014) Swedish Meteorological and Hydrological Institute web page. Accessed 12 Jan 2014
  87. www.sna.se (2010) National Atlas of Sweden web page. Accessed 5 Oct 2010
  88. Zackrisson O (1977) Influence of forest fires on north Swedish boreal forest. Oikos 29:22–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tove Hultberg
    • 1
  • Marie-José Gaillard
    • 2
  • Britt Grundmann
    • 3
  • Matts Lindbladh
    • 1
  1. 1.Swedish University of Agricultural Sciences, Southern Swedish Forest Research CentreAlnarpSweden
  2. 2.Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
  3. 3.Department of Biology and Environmental ScienceTechnische Universität DresdenTharandtGermany

Personalised recommendations