Skip to main content
Log in

A Generalized Sine-Gordon Equation: Reductions and Integrable Discretizations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we propose fully discrete analogues of a generalized sine-Gordon (gsG) equation \(u_{t x}=\left( 1+\nu \partial _x^2\right) \sin u\). The key points of the construction are based on the bilinear discrete KP hierarchy and appropriate definition of discrete reciprocal transformations. We derive semi-discrete analogues of the gsG equation from the fully discrete gsG equation by taking the temporal parameter limit \(b\rightarrow 0\). In particular, one fully discrete gsG equation is reduced to a semi-discrete gsG equation in the case of \(\nu =-1\) (Feng et al. in Numer Algorithms 94:351–370, 2023). Furthermore, N-soliton solutions to the semi- and fully discrete analogues of the gsG equation in the determinant form are presented. Dynamics of one- and two-soliton solutions for the discrete gsG equations are analyzed. By introducing a parameter c, we demonstrate that the gsG equation can reduce to the sine-Gordon equation and the short pulse at the levels of continuous, semi-discrete and fully discrete cases. The limiting forms of the N-soliton solutions to the gsG equation in each level also correspond to those of the sine-Gordon equation and the short pulse equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973)

    Article  MathSciNet  Google Scholar 

  • Barone, A., Esposito, F., Magee, C., Scott, A.: Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1, 227–267 (1971)

    Article  Google Scholar 

  • Caudrey, P.J., Gibbon, J.D., Eilbeck, J.C., Bullough, R.K.: Exact multisoliton solutions of the Self-Induced transparency and sine-Gordon equations. Phys. Rev. Lett. 30, 237–238 (1973)

    Article  Google Scholar 

  • Caudrey, P., Eilbeck, J., Gibbon, J.: The sine-Gordon equation as a model classical field theory. Nuovo. Cim. B 25, 497–512 (1975)

    Article  Google Scholar 

  • Chen, M., Fan, E.: Riemann-Hilbert approach for discrete sine-Gordon equation with simple and double poles. Stud. Appl. Math. 148, 1180–1207 (2022)

    Article  MathSciNet  Google Scholar 

  • Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences. American Mathematical Society, New York, Providence, RI (1999)

  • Eichenherr, H., Pohlmeyer, K.: Lax pairs for certain generalizations of the sine-Gordon equation. Phys. Lett. B 89, 76–78 (1979)

    Article  Google Scholar 

  • Feng, B.F., Maruno, K., Ohta, Y.: Integrable discretization of the short pulse equation. J. Phys. A 43, 085203 (2010)

    Article  MathSciNet  Google Scholar 

  • Feng, B.F., Maruno, K., Ohta, Y.: Integrable discretizations for the short-wave model of the Camassa-Holm equation. J. Phys. A 43, 265202 (2010)

    Article  MathSciNet  Google Scholar 

  • Feng, B.F., Maruno, K., Ohta, Y.: Integrable semi-discretization of a multi-component short pulse equation. J. Math. Phys. 56, 043502 (2015)

    Article  MathSciNet  Google Scholar 

  • Feng, B.F., Maruno, K., Ohta, Y.: Integrable semi-discrete Degasperis-Procesi equation. Nonlinearity 30, 2246–2267 (2017)

    Article  MathSciNet  Google Scholar 

  • Feng, B.F., Sheng, H.H., Yu, G.F.: Integrable semi-discretizations and self-adaptive moving mesh method for a generalized sine-Gordon equation. Numer. Algorithms 94, 351–370 (2023)

    Article  MathSciNet  Google Scholar 

  • Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    Article  MathSciNet  Google Scholar 

  • Hanif, Y., Saleem, U.: Exact solutions of semi-discrete sine-Gordon equation. Eur. Phys. J. Plus 134, 1–9 (2019)

    Article  Google Scholar 

  • He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J. Sci. Comput. 33, 1234–1245 (2011)

    Article  MathSciNet  Google Scholar 

  • Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete Systems and Integrability. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  • Hirota, R.: Exact solution of the sine-Gordon equation for multiple collisions of solitons. J. Phys. Soc. Jpn. 33, 1459–1463 (1972)

    Article  Google Scholar 

  • Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)

    Article  MathSciNet  Google Scholar 

  • Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785–3791 (1981)

    Article  MathSciNet  Google Scholar 

  • Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified kudryashov method. J. Mod. Opt. 65, 361–364 (2018)

    Article  MathSciNet  Google Scholar 

  • Kou, J., Zhang, D.J., Shi, Y., Zhao, S.L.: Generating solutions to discrete sine-Gordon Equation from modified Bäcklund transformation. Commun. Theor. Phys. 55, 545–550 (2011)

    Article  MathSciNet  Google Scholar 

  • Krichever, I., Lipan, O., Wiegmann, P., Zabrodin, A.: Quantum integrable models and discrete classical Hirota equations. Commun. Math. Phys. 188, 267–304 (1997)

    Article  MathSciNet  Google Scholar 

  • Kuniba, A., Nakanishi, T., Suzuki, J.: \(T\)-systems and \(Y\)-systems in integrable systems. J. Phys. A 44, 103001 (2011)

    Article  MathSciNet  Google Scholar 

  • Lenells, J.: An integrable generalization of the sine-Gordon equation on the half-line. IMA J. Appl. Math. 76, 554–572 (2011)

    Article  MathSciNet  Google Scholar 

  • Lenells, J., Fokas, A.S.: On a novel integrable generalization of the sine-Gordon equation. J. Math. Phys. 51, 023519 (2010)

    Article  MathSciNet  Google Scholar 

  • Levi, D., Ragnisco, O., Bruschi, M.: Extension of the Zakharov-Shabat generalized inverse method to solve differential-difference and difference-difference equations. Nuovo Cimento A 58, 56–66 (1980)

    Article  MathSciNet  Google Scholar 

  • Matsuno, Y.: A direct method for solving the generalized sine-Gordon equation. J. Phys. A 10, 105204 (2010)

    Article  MathSciNet  Google Scholar 

  • Matsuno, Y.: A direct method for solving the generalized sine-Gordon equation II. J. Phys. A 43, 375201 (2010)

    Article  MathSciNet  Google Scholar 

  • Matsuno, Y.: A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys. 52, 123702 (2011)

    Article  MathSciNet  Google Scholar 

  • Mikhailov, A.V., Papamikos, G., Wang, J.: Dressing method for the vector sine-Gordon equation and its soliton interactions. Phys. D 325, 53–62 (2016)

    Article  MathSciNet  Google Scholar 

  • Mikhailov, A.V., Papamikos, G., Wang, J.: Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere. Lett. Math. Phys. 106, 973–996 (2016)

    Article  MathSciNet  Google Scholar 

  • Miwa, T.: On Hirota’s difference equations. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 9–12 (1982)

    Article  MathSciNet  Google Scholar 

  • Nagai, A., Tokihiro, T., Satsuma, J.: The Toda molecule equation and the \(\epsilon \)-algorithm. Math. Comput. 67, 1565–1575 (1998)

    Article  MathSciNet  Google Scholar 

  • Nagai, A., Takahashi, D., Tokihiro, T.: Soliton cellular automaton, Toda molecule equation and sorting algorithm. Phys. Lett. A 255, 265–271 (1999)

    Article  Google Scholar 

  • Ohta, Y., Hirota, R., Tsujimoto, S., Imai, T.: Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy. J. Phys. Soc. Jpn. 62, 1872–1886 (1993)

    Article  MathSciNet  Google Scholar 

  • Ohta, Y., Kajiwara, K., Matsukidaira, J., Satsuma, J.: Casorati determinant solution for the relativistic Toda lattice equation. J. Math. Phys. 34, 5190–5204 (1993)

    Article  MathSciNet  Google Scholar 

  • Ohta, Y., Maruno, K., Feng, B.F.: An integrable semi-discretization of the Camassa-Holm equation and its determinant solution. J. Phys. A 41, 355205 (2008)

    Article  MathSciNet  Google Scholar 

  • Orfanidis, S.J.: Discrete sine-Gordon equations. Phys. Rev. D 18, 3822–3827 (1978)

    Article  MathSciNet  Google Scholar 

  • Orfanidis, S.J.: Group-theoretical aspects of the discrete sine-Gordon equation. Phys. Rev. D 21, 1507–1512 (1980)

    Article  MathSciNet  Google Scholar 

  • Pohlmeyer, K., Rehren, K.H.: Reduction of the two-dimensional \(\cal{O} (n)\) nonlinear \(\sigma \)-model. J. Math. Phys. 20, 2628–2632 (1979)

    Article  MathSciNet  Google Scholar 

  • Robelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81, 221–248 (1989)

    Article  MathSciNet  Google Scholar 

  • Rubinstein, J.: Sine-Gordon equation. J. Math. Phys. 11, 258–266 (1970)

    Article  MathSciNet  Google Scholar 

  • Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MathSciNet  Google Scholar 

  • Scott, A.: Propagation of magnetic flux on a long Josephson tunnel junction. Nuovo. Cim. B 69, 241–261 (1970)

    Article  Google Scholar 

  • Sheng, H.H., Yu, G.F., Feng, B.F.: An integrable semidiscretization of the modified Camassa-Holm equation with linear dispersion term. Stud. Appl. Math. 149, 230–265 (2022)

    Article  MathSciNet  Google Scholar 

  • Tsitsas, N.L., Horikis, T.P., Shen, Y., Kevrekidis, P.G., Whitaker, N., Frantzeskakis, D.J.: Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials. Phys. Lett. A 374, 1384–1388 (2010)

    Article  Google Scholar 

  • Tsujimoto, S., Kondo, K.: The molecule solutions of discrete integrable systems and orthogonal polynomials. RIMS K\(\hat{o}\)ky\(\hat{u}\)roku Bessatsu, 1170, 1–8. (in Japanese) (2000)

  • Vinet, L., Zhedanov, A.: An integrable chain and bi-orthogonal polynomials. Lett. Math. Phys. 46, 233–245 (1998)

    Article  MathSciNet  Google Scholar 

  • Yu, G.F., Xu, Z.W.: Dynamics of a differential-difference integrable (2 + 1)-dimensional system. Phys. Rev. E 91, 062902 (2015)

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Chang, X., Hu, J., Hu, X., Tam, H.: Integrable discretization of soliton equations via bilinear method and Bäcklund transformation. Sci. China Math. 58, 279–296 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the referees for their careful reading and valuable suggestions that made the paper more readable and rigorous. G.F. Yu is supported by National Natural Science Foundation of China (Grant Nos. 12175155, 12371251), Shanghai Frontier Research Institute for Modern Analysis and the Fundamental Research Funds for the Central Universities. B.F. Feng’s work is supported by the U.S. Department of Defense (DoD), Air Force for Scientific Research (AFOSR) under grant No. W911NF2010276.

Author information

Authors and Affiliations

Authors

Contributions

1. Provided the analysis of the solutions, Carrying out plots and simulations, Writing manuscript draft. 2. Conceptualization, Methodology, Proposing ideas, Carrying out plots and simulations, Writing-Reviewing and Editing. 3. Proposing ideas, Methodology, Writing-Reviewing and Editing.

Corresponding authors

Correspondence to Bao-Feng Feng or Guo-Fu Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Panayotis Kevrekidis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Theorem 1.1

Proof

Note that we can rewrite (144), (147), (148) and (149) as

$$\begin{aligned}&\frac{1}{b}\sin \frac{\phi _k^{l+1}-\phi _{k}^l}{2}=c\sin \frac{u_k^{l+1}+u_{k}^l}{2}, \end{aligned}$$
(319)
$$\begin{aligned}&\frac{1}{b}\cos \frac{\phi _k^{l\!+\!1}\!-\!\phi _k^l}{2}\!=\!\frac{\sqrt{b^2c^2-1}}{b}\sinh \frac{x_k^{l+1}\!-\!x_k^l-2bc\!+\!2\chi _1}{2}, \sinh \chi _1\!{=}\!\frac{1}{\sqrt{b^2c^2-1}}, \end{aligned}$$
(320)
$$\begin{aligned}&{a}\sin \frac{\phi _k^l+\phi _{k+1}^l}{2}={c}\sin \frac{u_{k+1}^l-u_k^l}{2}, \end{aligned}$$
(321)
$$\begin{aligned}&{a}\cos \frac{\phi _k^l+\phi _{k+1}^l}{2}\!=\!\sqrt{c^2\!-\!a^2}\sinh \frac{x_{k\!+\!1}^l\!-\!x_k^l\!-\!2ac^{-1}\!+\!2\chi _2}{2},\ \sinh \chi _2\!{=}\!\frac{a}{\sqrt{c^2\!-\!a^2}}. \end{aligned}$$
(322)

By making a shift \(k\rightarrow k+1\) in (319) first, then adding and subtracting with (319), we obtain

$$\begin{aligned}&\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}\nonumber \\&\quad =bc\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4} \cos \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_k^l}{4}, \end{aligned}$$
(323)
$$\begin{aligned}&\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}\nonumber \\&\quad =bc\cos \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4} \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_k^l}{4}. \end{aligned}$$
(324)

Similarly, from (320)–(322), one can obtain

$$\begin{aligned}&\sqrt{b^2c^2-1}\sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l+x_k^{l+1}-x_k^l-4bc+4\chi _1}{4}\cosh \frac{x_{k+1}^{l+1}-x_{k+1}^l-x_k^{l+1}+x_k^l}{4}\nonumber \\&=\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}, \end{aligned}$$
(325)
$$\begin{aligned}&\sqrt{b^2c^2-1}\cosh \frac{x_{k+1}^{l+1}-x_{k+1}^l+x_k^{l+1}-x_k^l-4bc+4\chi _1}{4}\sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l-x_k^{l+1}+x_k^l}{4}\nonumber \\&\quad =-\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}, \end{aligned}$$
(326)
$$\begin{aligned}&a\sin \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1} +\phi _k^l}{4}\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\nonumber \\&\quad =c\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_k^l}{4}\cos \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4} , \end{aligned}$$
(327)
$$\begin{aligned}&a\cos \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1}+\phi _k^l}{4}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}\nonumber \\&\quad =c\cos \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_k^l}{4}\sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4} , \end{aligned}$$
(328)

and

$$\begin{aligned}&\sqrt{c^2-a^2}\sinh \frac{x_{k+1}^{l+1}-x_k^{l+1}+x_{k+1}^l-x_k^l-4ac^{-1}+4\chi _2}{4}\nonumber \\&\qquad \times \cosh \frac{x_{k+1}^{l+1}-x_{k+1}^l-x_k^{l+1}+x_k^l}{4}\nonumber \\&\quad =a\cos \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1}+\phi _k^l}{4}\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}, \end{aligned}$$
(329)
$$\begin{aligned}&\sqrt{c^2-a^2}\cosh \frac{x_{k+1}^{l+1}-x_k^{l+1}+x_{k+1}^l-x_k^l-4ac^{-1}+4\chi _2}{4}\nonumber \\&\qquad \times \sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l-x_k^{l+1}+x_k^l}{4}\nonumber \\&\quad =-a\sin \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1}+\phi _k^l}{4}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{4}. \end{aligned}$$
(330)

Thus, Eqs. (323) and (328) give the equation

$$\begin{aligned}&\frac{1}{a b} \sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4}\cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}\nonumber \\&\quad =\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4}\cos \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1}+\phi _k^l}{4}. \end{aligned}$$
(331)

Equations (325) and (329) lead to

$$\begin{aligned}&a\sqrt{b^2c^2-1}\sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l+x_k^{l+1}-x_k^l-4bc+4\chi _1}{4}\cos \frac{\phi _{k+1}^{l+1}+\phi _{k+1}^l+\phi _k^{l+1}+\phi _k^l}{4}\nonumber \\&\quad =\sqrt{c^2-a^2}\sinh \frac{x_{k+1}^{l+1}-x_k^{l+1}+x_{k+1}^l-x_k^l-4ac^{-1}+4\chi _2}{4}\nonumber \\&\qquad \times \cos \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{4}. \end{aligned}$$
(332)

The substitution of (332) into (331) leads to

$$\begin{aligned} \frac{1}{b}\sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4}=\Delta _k^l \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4}, \end{aligned}$$
(333)

with

$$\begin{aligned} \Delta _k^l=\frac{\sqrt{c^2-a^2}\sinh \frac{x_{k+1}^{l+1}-x_k^{l+1}+x_{k+1}^l-x_k^l-4ac^{-1}+4\chi _2}{4}}{\sqrt{b^2c^2-1}\sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l+x_k^{l+1}-x_k^l-4bc+4\chi _1}{4}}. \end{aligned}$$
(334)

On the other hand, by multiplying (323) and (324), (325) and (326), we obtain, respectively

$$\begin{aligned}&b^2c^2\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{2} \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_k^l}{2}\nonumber \\&\quad =\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{2}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{2}, \end{aligned}$$
(335)
$$\begin{aligned}&({b^2c^2{-}1})\sinh \frac{x_{k+1}^{l+1}{-}x_{k+1}^l{+}x_k^{l+1}{-}x_k^l-4bc+4\chi _1}{2}\sinh \frac{x_{k+1}^{l+1}-x_{k+1}^l-x_k^{l+1}+x_k^l}{2}\nonumber \\&\quad =-\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l+\phi _k^{l+1}-\phi _k^l}{2}\sin \frac{\phi _{k+1}^{l+1}-\phi _{k+1}^l-\phi _k^{l+1}+\phi _k^l}{2}, \end{aligned}$$
(336)

which leads to exactly (3) by eliminating the right side of the equations. Meanwhile, from (319)–(322), we have

$$\begin{aligned}&J_k^l=\frac{{b^2c^2-1}}{b^2}\sinh ^2\frac{x_k^{l+1}-x_k^l-2bc+2\chi _1}{2}+c^{2}\sin ^2\frac{u_k^l+u_k^{l+1}}{2}=\frac{1}{b^2}, \end{aligned}$$
(337)
$$\begin{aligned}&I_k^l=({c^2-a^2})\sinh ^2\frac{x_{k+1}^l-x_k^l-2ac^{-1}+2\chi _2}{2}+c^{2}\sin ^2\frac{u_{k+1}^l-u_k^l}{2}=a^2. \end{aligned}$$
(338)

Here \(a^2\) and \(\frac{1}{b^2}\) are constants and thus \(J_k^l\) (337) and \(I_k^l\) (338) actually give the conserved quantities. The proof is completed. \(\square \)

B Proof of Theorem 1.2

Proof

We can rewrite (144) and (147)–(149) as

$$\begin{aligned} \frac{1}{b}\sinh \frac{\varphi _k^{l+1}-\varphi _{k}^l}{2}&=\lambda \sin \frac{u_k^{l+1}+u_{k}^l}{2}, \end{aligned}$$
(339)
$$\begin{aligned} \frac{1}{b }\cosh \frac{\varphi _k^{l\!+\!1}\!-\!\varphi _k^l}{2}&\!=\!\frac{\sqrt{b^2\lambda ^2\!+\!1}}{b}\sin \frac{\tilde{x}_k^{l+1}\!-\!\tilde{x}_k^l\!+\!2b\lambda \!+\!2\omega _1}{2},\ \sin \omega _1\!{=}\!\frac{1}{\sqrt{b^2\lambda ^2\!+\!1}}, \end{aligned}$$
(340)
$$\begin{aligned} a\sinh \frac{\varphi _k^l+\varphi _{k+1}^l}{2}&=d\sin \frac{u_{k+1}^l-u_k^l}{2}, \end{aligned}$$
(341)
$$\begin{aligned} a\cosh \frac{\varphi _k^l\!+\!\varphi _{k+1}^l}{2}&\!=\!\sqrt{a^2\!+\!\lambda ^2}\sin \frac{\tilde{x}_{k\!+\!1}^l-\tilde{x}_k^l\!-\!2a\lambda ^{-1}\!+\!2\omega _2}{2},\ \sin \omega _2\!{=}\!\frac{a}{\sqrt{a^2\!+\!\lambda ^2}}. \end{aligned}$$
(342)

By making a shift of \(k\rightarrow k+1\) in (339), then adding and subtracting it and (339), one obtains

$$\begin{aligned}&\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _{k}^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _{k}^l}{4}\nonumber \\&\quad =bd\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_{k}^l}{4} \cos \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{4}, \end{aligned}$$
(343)
$$\begin{aligned}&\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _{k}^l}{4}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _{k}^l}{4}\nonumber \\&\quad =bd\cos \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_{k}^l}{4} \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{4}. \end{aligned}$$
(344)

Similarly, from Eqs. (340)–(342), we arrive at

$$\begin{aligned}&\sqrt{1+b^2\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{4}\cos \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l{-}\tilde{x}_k^{l+1}{+}\tilde{x}_k^l}{4}\nonumber \\&\quad =\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _k^l}{4}, \end{aligned}$$
(345)
$$\begin{aligned}&\sqrt{1+b^2\lambda ^2}\cos \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{4}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l{-}\tilde{x}_k^{l+1}{+}\tilde{x}_k^l}{4}\nonumber \\&\quad =\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _k^l}{4}, \end{aligned}$$
(346)
$$\begin{aligned}&a\sinh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}\nonumber \\&\quad =d\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{4}\cos \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_{k}^l}{4}, \end{aligned}$$
(347)
$$\begin{aligned}&a\cosh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}\nonumber \\&\quad =d\cos \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{4}\sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_{k}^l}{4}, \end{aligned}$$
(348)

and

$$\begin{aligned}&\sqrt{a^2+\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_k^{l+1}+\tilde{x}_{k+1}^l-\tilde{x}_k^l-4a\lambda ^{-1}+4\omega _2}{4}\cos \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l-\tilde{x}_k^{l+1}+\tilde{x}_k^l}{4}\nonumber \\&\quad =a\cosh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}, \end{aligned}$$
(349)
$$\begin{aligned}&\sqrt{a^2+\lambda ^2}\cos \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_k^{l+1}+\tilde{x}_{k+1}^l-\tilde{x}_k^l-4a\lambda ^{-1}+4\omega _2}{4}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l-\tilde{x}_k^{l+1}+\tilde{x}_k^l}{4}\nonumber \\&\quad =a\sinh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{4}, \end{aligned}$$
(350)

respectively. Note that Eqs. (343) and (348) give

$$\begin{aligned}&\frac{1}{ab} \sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _k^l}{4}\nonumber \\&\quad =\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4}\cosh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4} . \end{aligned}$$
(351)

Equations (345) and (349) lead to

$$\begin{aligned}&a\sqrt{1+b^2\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{4}\nonumber \\&\qquad \times \cosh \frac{\varphi _{k+1}^{l+1}+\varphi _{k+1}^l+\varphi _k^{l+1}+\varphi _k^l}{4}\nonumber \\&\quad =\sqrt{a^2+\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_k^{l+1}+\tilde{x}_{k+1}^l-\tilde{x}_k^l-4a\lambda ^{-1}+4\omega _2}{4}\nonumber \\&\qquad \times \cosh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _k^l}{4}, \end{aligned}$$
(352)

Substituting (352) into (351), we have

$$\begin{aligned} \frac{1}{b} \sin \frac{u_{k+1}^{l+1}-u_{k+1}^l-u_k^{l+1}+u_k^l}{4} =\tilde{\Delta }_k^l\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_k^l}{4}, \end{aligned}$$
(353)

with

$$\begin{aligned} \tilde{\Delta }_k^l=\frac{\sqrt{a^2+\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_k^{l+1}+\tilde{x}_{k+1}^l-\tilde{x}_k^l-4a\lambda ^{-1}+4\omega _2}{4}}{\sqrt{1+b^2\lambda ^2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{4}}. \end{aligned}$$
(354)

Subsequently, by multiplying Eqs. (343) and (344), (345) and (346), we obtain

$$\begin{aligned}&b^2\lambda ^2\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_{k}^l}{2} \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{2}\nonumber \\&\quad =\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _{k}^l}{2}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _{k}^l}{2}, \end{aligned}$$
(355)
$$\begin{aligned}&({1+b^2\lambda ^2})\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l-\tilde{x}_k^{l+1}{+}\tilde{x}_k^l}{2}\nonumber \\&\quad =\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l+\varphi _k^{l+1}-\varphi _k^l}{2}\sinh \frac{\varphi _{k+1}^{l+1}-\varphi _{k+1}^l-\varphi _k^{l+1}+\varphi _k^l}{2}, \end{aligned}$$
(356)

which can be recast to

$$\begin{aligned}&({1+b^2\lambda ^2})\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l+\tilde{x}_k^{l+1}-\tilde{x}_k^l+4b\lambda +4\omega _1}{2}\sin \frac{\tilde{x}_{k+1}^{l+1}-\tilde{x}_{k+1}^l-\tilde{x}_k^{l+1}{+}\tilde{x}_k^l}{2}\nonumber \\&=b^2\lambda ^2\sin \frac{u_{k+1}^{l+1}+u_{k+1}^l+u_k^{l+1}+u_{k}^l}{2} \sin \frac{u_{k+1}^{l+1}+u_{k+1}^l-u_k^{l+1}-u_{k}^l}{2}. \end{aligned}$$
(357)

Then, we obtain the fully discrete gsG equation with \(\nu =1\). In addition, from (339)–(342), we know

$$\begin{aligned} \tilde{J}_k^l=&\left( \frac{1}{b}\cos \frac{\tilde{x}_k^{l+1}-\tilde{x}_k^l+2b\lambda }{2}+d\sin \frac{\tilde{x}_k^{l+1}-\tilde{x}_k^l+2b\lambda }{2}\right) ^2\nonumber \\&-\lambda ^2\sin ^2\frac{u_k^{l+1}+u_{k}^l}{2}=\frac{1}{b^2}, \end{aligned}$$
(358)
$$\begin{aligned} \tilde{I}_k^l=&\left( a\cos \frac{\tilde{x}_{k+1}^l-\tilde{x}_k^l-2a\lambda ^{-1}}{2}+d\sin \frac{\tilde{x}_{k+1}^l-\tilde{x}_k^l-2a\lambda ^{-1}}{2}\right) ^2\nonumber \\&-\lambda ^2\sin ^2\frac{u_{k+1}^l-u_k^l}{2}={a^2}. \end{aligned}$$
(359)

\(\tilde{I}_k^l\) and \(\tilde{J}_k^l\) are conserved quantities because \(a^2\) and \(\frac{1}{b^2}\) are constants. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, HH., Feng, BF. & Yu, GF. A Generalized Sine-Gordon Equation: Reductions and Integrable Discretizations. J Nonlinear Sci 34, 55 (2024). https://doi.org/10.1007/s00332-024-10030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10030-w

Keywords

Mathematics Subject Classification

Navigation