Skip to main content
Log in

Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the general rogue wave solutions and their patterns in the vector (or M-component) nonlinear Schrödinger (NLS) equation. By applying the Kadomtsev–Petviashvili reduction method, we derive an explicit solution for the rogue wave expressed by \(\tau \) functions that are determinants of \(K\times K\) block matrices (\(1\le K \le M\)) with an index jump of \(M+1\). Patterns of the rogue waves for \(M=3,4\) and \(K=1\) are thoroughly investigated. It is found that when one of the internal parameters is large enough, the wave pattern is linked to the root structure of a generalized Wronskian–Hermite polynomial hierarchy in contrast with rogue wave patterns of the scalar NLS equation, the Manakov system, and many others. Moreover, the generalized Wronskian–Hermite polynomial hierarchy includes the Yablonskii–Vorob’ev polynomial and Okamoto polynomial hierarchies as special cases, which have been used to describe the rogue wave patterns of the scalar NLS equation and the Manakov system, respectively. As a result, we extend the most recent results by Yang et al. for the scalar NLS equation and the Manakov system. It is noted that the case \(M=3\) displays a new feature different from the previous results. The predicted rogue wave patterns are compared with the ones of the true solutions for both cases of \(M=3,4\). An excellent agreement is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Ablowitz, M.J., Ablowitz, M., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering, vol. 149. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80(2), 026601 (2009)

    Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A.: Nonlinear pulses and beams. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Bailung, H., Sharma, S., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107(25), 255005 (2011)

    Google Scholar 

  • Balogh, F., Bertola, M., Bothner, T.: Hankel determinant approach to generalized Vorob’ev–Yablonski polynomials and their roots. Constr. Approx. 44(3), 417–453 (2016)

    MathSciNet  MATH  Google Scholar 

  • Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113(3), 034101 (2014)

    Google Scholar 

  • Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109(4), 044102 (2012)

    Google Scholar 

  • Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bilman, D., Buckingham, R.: Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation. J. Nonlinear Sci. 29(5), 2185–2229 (2019)

    MathSciNet  MATH  Google Scholar 

  • Bilman, D., Ling, L., Miller, P.D.: Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy. Duke Math. J. 169(4), 671–760 (2020)

    MathSciNet  MATH  Google Scholar 

  • Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Comm. Pure Appl. Math. 72(8), 1722–1805 (2019)

    MathSciNet  MATH  Google Scholar 

  • Bilman, D., Miller, P.D.: Broader universality of rogue waves of infinite order. Physica D 435, 133289 (2022)

    MathSciNet  MATH  Google Scholar 

  • Bludov, Y.V., Konotop, V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80(3), 033610 (2009)

    Google Scholar 

  • Buckingham, R.J., Miller, P.D.: Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour. Nonlinearity 27(10), 2489 (2014)

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Chen, Y., Feng, B.-F., Maruno, K.-I.: Rational solutions to two-and one-dimensional multicomponent Yajima–Oikawa systems. Phys. Lett. A 379(24–25), 1510–1519 (2015)

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Chen, Y., Feng, B.-F., Maruno, K.-I., Ohta, Y.: General high-order rogue waves of the (1+ 1)-dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn. 87(9), 094007 (2018)

    Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2210), 20170814 (2018)

    MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100(5), 052219 (2019)

    MathSciNet  Google Scholar 

  • Chen, S., Mihalache, D.: Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A Math. Theor. 48(21), 215202 (2015)

    MathSciNet  MATH  Google Scholar 

  • Clarkson, P.A.: The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44(11), 5350–5374 (2003)

    MathSciNet  MATH  Google Scholar 

  • Clarkson, P.A., Mansfield, E.L.: The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity 16(3), R1 (2003)

    MATH  Google Scholar 

  • Dubard, P., Gaillard, P., Klein, C., Matveev, V.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185(1), 247–258 (2010)

    Google Scholar 

  • Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1(11), 675–689 (2019)

    Google Scholar 

  • Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    MathSciNet  MATH  Google Scholar 

  • Eliasson, L. H., Kuksin, S. B.: KAM for the nonlinear Schrödinger equation. Ann. Math., pp. 371–435 (2010)

  • Feng, B.-F., Ling, L., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144(1), 46–101 (2020)

    MathSciNet  MATH  Google Scholar 

  • Feng, B.-F., Shi, C., Zhang, G., Wu, C.: Higher-order rogue wave solutions of the Sasa–Satsuma equation. J. Phys. A Math. Theor. 55(23), 235701 (2022)

    MathSciNet  MATH  Google Scholar 

  • Fukutani, S., Okamoto, K., Umemura, H.: Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations. Nagoya Math. J. 159, 179–200 (2000)

    MathSciNet  MATH  Google Scholar 

  • Ganshin, A., Efimov, V., Kolmakov, G., Mezhov-Deglin, L., McClintock, P.V.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101(6), 065303 (2008)

    Google Scholar 

  • Guo, B., Ling, L., Liu, Q.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)

    Google Scholar 

  • Haver, S.: A possible freak wave event measured at the Draupner jacket January 1 1995. In: Rogue waves, vol. 2004, pp. 1–8 (2004)

  • He, J., Zhang, H., Wang, L., Porsezian, K., Fokas, A.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87(5), 052914 (2013)

    Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory, vol. 155. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Kametaka, Y.: On poles of the rational solution of the Toda equation of Painlevé-II type. Proc. Jpn. Acad. A Math. 59(8), 358–360 (1983)

    MathSciNet  MATH  Google Scholar 

  • Kang, J., Stegeman, G., Aitchison, J., Akhmediev, N.: Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys. Rev. Lett. 76(20), 3699 (1996)

    Google Scholar 

  • Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86(22), 5043 (2001)

    Google Scholar 

  • Kato, T.: On nonlinear schrödinger equations. Ann. de l’IHP Phys. théorique 46, 113–129 (1987)

    MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84(5), 056611 (2011)

    MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Phys. Rev. E 88(1), 013207 (2013)

    Google Scholar 

  • Kodama, Y., Mikhailov, A.: Symmetry and perturbation of the vector nonlinear Schrödinger equation. Physica D 152, 171–177 (2001)

    MathSciNet  MATH  Google Scholar 

  • Ling, L., Guo, B., Zhao, L.-C.: High-order rogue waves in vector nonlinear Schrödinger equations. Phys. Rev. E 89(4), 041201 (2014)

    Google Scholar 

  • Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38(2), 248–253 (1974)

    Google Scholar 

  • Mu, G., Qin, Z., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75(1), 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  • Oblomkov, A.A.: Monodromy-free Schrödinger operators with quadratically increasing potentials. Theor. Math. Phys. 121(3), 1574–1584 (1999)

    MATH  Google Scholar 

  • Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2142), 1716–1740 (2012)

    MathSciNet  MATH  Google Scholar 

  • Okamoto, K.: Studies on the Painlevé equations. III: second and fourth Painlevé equations, \(P_{II}\) and \(P_{IV}\). Math. Ann. 275(2), 221–255 (1986)

    MathSciNet  MATH  Google Scholar 

  • Pelinovsky, D.E., Yang, J.: Parametric resonance and radiative decay of dispersion-managed solitons. SIAM J. Appl. Math. 64(4), 1360–1382 (2004)

    MathSciNet  MATH  Google Scholar 

  • Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 25(1), 16–43 (1983)

    MATH  Google Scholar 

  • Rao, J., Porsezian, K., Kanna, T., Cheng, Y., He, J.: Vector rogue waves in integrable M-coupled nonlinear Schrödinger equations. Phys. Scr. 94(7), 075205 (2019)

    Google Scholar 

  • Shats, M., Punzmann, H., Xia, H.: Capillary rogue waves. Phys. Rev. Lett. 104(10), 104503 (2010)

    Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar 

  • Taneda, M.: Remarks on the Yablonskii–Vorob’ev polynomials. Nagoya Math. J. 159, 87–111 (2000)

    MathSciNet  MATH  Google Scholar 

  • Vorob’ev, A.: On the rational solutions of the second Painlevé equation. Diff. Eqns. 1(1), 79–81 (1965)

    Google Scholar 

  • Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982)

    MATH  Google Scholar 

  • Wu, C., Zhang, G., Shi, C., Feng, B.-F.: General rogue wave solutions to the Sasa–Satsuma equation. arXiv preprint arXiv:2206.02210 (2022)

  • Yablonskii, A.: On rational solutions of the second Painlevé equation. Vesti AN BSSR Ser. fiz-tekh Nauk 3, 30–35 (1959)

    Google Scholar 

  • Yang, B., Chen, J., Yang, J.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30(6), 3027–3056 (2020)

    MathSciNet  MATH  Google Scholar 

  • Yang, B., Yang, J.: Universal rogue wave patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy. Physica D 425, 132958 (2021)

    MathSciNet  MATH  Google Scholar 

  • Yang, B., Yang, J.: General rogue waves in the three-wave resonant interaction systems. IMA J. Appl. Math. 86(2), 378–425 (2021)

    MathSciNet  MATH  Google Scholar 

  • Yang, B., Yang, J.: Rogue wave patterns in the nonlinear Schrödinger equation. Physica D 419, 132850 (2021)

    MATH  Google Scholar 

  • Yang, B., Yang, J.: Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation. J. Nonlinear Sci. 32(4), 1–45 (2022)

    MathSciNet  MATH  Google Scholar 

  • Yang, B., Yang, J.: Rogue wave patterns associated with Okamoto polynomial hierarchies. Stud. Appl. Math. (2023). https://doi.org/10.1111/sapm.12573

    Article  MathSciNet  Google Scholar 

  • Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  • Yang, J.: A normal form for Hamiltonian–Hopf bifurcations in nonlinear Schrödinger equations with general external potentials. SIAM J. Appl. Math. 76(2), 598–617 (2016)

    MathSciNet  MATH  Google Scholar 

  • Zhang, G., Ling, L., Yan, Z.: Multi-component nonlinear Schrödinger equations with nonzero boundary conditions: higher-order vector Peregrine solitons and asymptotic estimates. J. Nonlinear Sci. 31(5), 1–52 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

B.F. Feng was partially supported by National Science Foundation (NSF) under Grant No. DMS-1715991 and US Department of Defense (DoD), Air Force for Scientific Research (AFOSR) under grant No. W911NF2010276. C.F. Wu was supported by the National Natural Science Foundation of China (Grant Nos. 11701382 and 11971288) and Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021A1515010054). We would like to thank Mr. Yuke Wang for drawing some of the figures. We would also like to thank the anonymous referees for reading the manuscript carefully and providing valuable suggestions which have improved the readability of this paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Feng Feng or Chengfa Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix, we provide the proof of Lemma 2.1. Assume \(\xi \) is a root of \({\mathcal {R}}_M(z)=0\) of multiplicity M with \(\Im (\xi )\not = 0 \), then we have

$$\begin{aligned} {\mathcal {R}}^{(n)}_M(\xi ) =0, \quad n=0,1,2,\dots , M-1, \end{aligned}$$
(121)

where

$$\begin{aligned} {\mathcal {R}}^{(m)}_M(\xi ) = (-1)^m (m+1)! \sum _{j=1}^M \frac{r_j }{(\xi + k_j)^{m+2}}, \quad m \ge 1. \end{aligned}$$

The system of equations (121) is linear in \(r_j\), \(j=1,2,\dots , M\), so we can solve for them and obtain

$$\begin{aligned} (\xi + k_j )^{M+1} = -\dfrac{1}{2} \prod _{\begin{array}{c} i=1 \\ i \not =j \end{array}}^M (k_j-k_i) r_j. \end{aligned}$$
(122)

Denote by

$$\begin{aligned} \xi = x+ \textrm{i} y, \quad -\dfrac{1}{2} \prod _{\begin{array}{c} i=1 \\ i \not =j \end{array}}^M (k_j-k_i) r_j = \lambda _j^{M+1} \exp (\textrm{i} \theta _j \pi ), \quad j=1,2,\dots , M, \end{aligned}$$
(123)

where \(\lambda _j >0, x, y\) are real, \(y \not = 0\) and

$$\begin{aligned} \theta _j = {\left\{ \begin{array}{ll} 0, \quad \text { if } -\dfrac{1}{2} \prod _{\begin{array}{c} i=1 \\ i \not =j \end{array}}^M (k_j-k_i) r_j >0, \\ 1, \quad \text { if } -\dfrac{1}{2} \prod _{\begin{array}{c} i=1 \\ i \not =j \end{array}}^M (k_j-k_i) r_j <0, \end{array}\right. } \end{aligned}$$
(124)

then we deduce from (122) that, for each \(k_j\), there exits \(l_j \in \{0,1,\dots , M\}\) such that

$$\begin{aligned} x+k_j+ \textrm{i} y = {\left\{ \begin{array}{ll} \lambda _j \exp [2l_j \pi \textrm{i}/(M+1)], \quad \text { if } \theta _j=0, \\ \lambda _j\exp [(2 l_j +1) \pi \textrm{i}/(M+1)], \quad \text { if } \theta _j=1, \end{array}\right. } \end{aligned}$$
(125)

Comparing both sides of (125) gives

$$\begin{aligned} y = {\left\{ \begin{array}{ll} \lambda _j \sin [2l_j \pi /(M+1)], \quad \text { if } \theta _j=0, \\ \lambda _j \sin [(2 l_j +1) \pi /(M+1)], \quad \text { if } \theta _j=1. \end{array}\right. } \end{aligned}$$
(126)

This implies that all the corresponding \( \sin [2l_j \pi /(M+1)]\) or \(\sin [(2 l_j +1) \pi /(M+1)], j=1,2,\dots , M,\) should have the same sign. Without loss of generality, we may assume \(y>0\). Note that the set

$$\begin{aligned} \{1, \exp [ \pi \textrm{i}/(M+1)], \exp [ 2\pi \textrm{i}/(M+1)], \dots , \exp [2M \pi \textrm{i}/(M+1)], \exp [(2 M +1) \pi \textrm{i}/(M+1)]\} \end{aligned}$$
(127)

contains exactly M elements with positive imaginary parts, which are

$$\begin{aligned} \exp [ \pi \textrm{i}/(M+1)], \quad \exp [ 2\pi \textrm{i}/(M+1)], \dots , \quad \exp [M \pi \textrm{i}/(M+1)]. \end{aligned}$$
(128)

Since the \(k_j\)’s are distinct, it then follows that

$$\begin{aligned} x+k_j+ \textrm{i} y = \lambda _j \exp [\sigma _j \pi \textrm{i}/(M+1)], \end{aligned}$$
(129)

where \((\sigma _1, \sigma _2, \dots ,\sigma _M)\) can be any permutation of the set \(\{1,2,\dots ,M\}\). Without loss of generality, we may take

$$\begin{aligned} \sigma _j = j, \end{aligned}$$
(130)

where \(j=1,2,\dots , M\). In this circumstance, we have \(\theta _j=[1+(-1)^{j+1}]/2\) and

$$\begin{aligned} x= & {} \lambda _j \cos [j \pi /(M+1)] - k_j, \end{aligned}$$
(131)
$$\begin{aligned} y= & {} \lambda _j \sin [j \pi /(M+1)], \end{aligned}$$
(132)

and hence

$$\begin{aligned} \lambda _j= & {} \lambda _1 \frac{\sin [ \pi /(M+1)] }{\sin [j \pi /(M+1)]}, \end{aligned}$$
(133)
$$\begin{aligned} k_j= & {} k_1 + \lambda _j \cos [j \pi /(M+1)] -\lambda _1 \cos [ \pi /(M+1)], \end{aligned}$$
(134)
$$\begin{aligned}= & {} k_1 + \lambda _1 \left( \sin [ \pi /(M+1)] \cot [j \pi /(M+1)] - \cos [ \pi /(M+1)]\right) \end{aligned}$$
(135)

where \(j=1,2,\dots , M\). Further, we find from (123) and (133134135) that

$$\begin{aligned} r_j = 2 (-1)^{j+1} \prod _{\begin{array}{c} i=1 \\ i \not =j \end{array}}^M (k_j-k_i)^{-1} \left( \lambda _1 \frac{\sin [ \pi /(M+1)] }{\sin [j \pi /(M+1)]} \right) ^{M+1}. \end{aligned}$$
(136)

As \({\mathcal {R}}_M(z)\) is a rational function with real coefficients, it is clear that \(\xi ^*\) is a root of \({\mathcal {R}}_M(z)=0\) of multiplicity M as well. This completes the proof.

Appendix B

In this appendix, we apply Hirota’s bilinear method to derive rogue wave solutions of the vector NLS equation (1) presented in Theorem 2.2 based on the KP reduction technique. For convenience, we only consider the case when \(\tau _{\textbf{n}}\) given in (18) consists of \(M \times M\) block matrices, i.e., \(K=M\), as other cases can be treated in a similar manner. In such case, we have \(I_j = j \,(j=1,2,\dots , M)\) in (18).

We first transform the vector NLS equation (1) into a set of bilinear equations

$$\begin{aligned}&\left( D_x^2+\sum _{j=1}^M \sigma _j \rho _j^2\right) f \cdot f=\sum _{j=1}^M \sigma _j \rho _j^2 g_j g_j^*,\nonumber \\&\left( \textrm{i} D_t+D_x^2+2 \textrm{i} k_j D_x\right) g_j \cdot f=0, \quad j =1,2,\cdots ,M, \end{aligned}$$
(137)

under the nonzero boundary condition at \(\pm \infty \) by the variable transformation

$$\begin{aligned} u_j=\rho _j \frac{g_j}{f} \textrm{e}^{\textrm{i}\left( k_j x + w_j t\right) }, \quad j =1,2,\cdots ,M, \end{aligned}$$
(138)

where \(w_j=\sum _{j=1}^{M}\sigma _j \rho _j^2 - k_j^2,\) f is a real-valued function, \(g_j\) is a complex-valued function, and D is the Hirota’s bilinear operator (Hirota 2004) defined by

$$\begin{aligned} D_x^m D_t^n f \cdot g=\left. \left( \frac{\partial }{\partial x}-\frac{\partial }{\partial x^{\prime }}\right) ^m\left( \frac{\partial }{\partial t}-\frac{\partial }{\partial t^{\prime }}\right) ^n\left[ f(x, t) g\left( x^{\prime }, t^{\prime }\right) \right] \right| _{x^{\prime }=x, t^{\prime }=t}. \end{aligned}$$

Next we define

$$\begin{aligned} m^{\textbf{n}}&=\frac{1}{p+q}{\left[ \prod _{j=1}^{M} \left( -\frac{p-\textrm{i} k_j}{q+\textrm{i} k_j}\right) ^{n_j} \right] } e^{\xi +\eta }, \\ \xi&=p x+p^2 y+\sum _{j=1}^M\frac{1}{p-\textrm{i} k_j} v_j +\xi _0(p), \\ \eta&=q x-q^2 y+\sum _{j=1}^M\frac{1}{q+\textrm{i} k_j} v_j +\eta _0(q), \end{aligned}$$

where \(\textbf{n}=\left( n_1, n_2, \ldots , n_M\right) \) with \(n_j\) being integers, \(p, q, v_j\) are arbitrary complex constants, \(j=1,2,\dots , M\), and \( \xi _0(p), \eta _0(q)\) are arbitrary functions of p and q, respectively. Let \({\mathcal {A}}_i\) and \({\mathcal {B}}_j\) be differential operators of order i and j, respectively, defined by

$$\begin{aligned} {\mathcal {A}}_i(p)=\frac{1}{i !}\left[ f_1(p) \partial _p\right] ^i, \quad {\mathcal {B}}_j(q)=\frac{1}{i !}\left[ f_2(q) \partial _q\right] ^j, \end{aligned}$$

where \( f_1(p), f_2(q) \) are arbitrary functions of p and q, respectively. Then, it can be calculated that (Ohta and Yang 2012) the determinant

$$\begin{aligned} \tau _{\textbf{n}} = \det _{1 \le \nu , \mu \le N}\left( m_{i_\nu , j_\mu }^{\textbf{n}} \right) \end{aligned}$$

where \(\left( i_1, i_2, \cdots , i_N\right) \) and \(\left( j_1, j_2, \cdots , j_N\right) \) are arbitrary sequences of indices, and the matrix element \(m_{i j}^{\textbf{n}}\) is defined as

$$\begin{aligned} m_{i j}^{\textbf{n}}={\mathcal {A}}_i {\mathcal {B}}_j m^{\textbf{n}}, \end{aligned}$$
(139)

would satisfy the bilinear equations

$$\begin{aligned}&\left( \frac{1}{2} D_x D_{v_j}-1\right) \tau _{\textbf{n}} \cdot \tau _{\textbf{n}}=-\tau _{\textbf{n}_{j,1}} \tau _{\textbf{n}_{j,-1}}, \quad j= 1,2,\cdots , M,\nonumber \\&\left( D_x^2-D_y+2 \textrm{i} k_j D_x\right) \tau _{\textbf{n}_{j,1}} \cdot \tau _{\textbf{n}}=0, \quad j= 1,2,\cdots , M, \end{aligned}$$
(140)

where \(\textbf{n}_{j,i}=\textbf{n}+i \times \varvec{e}_j\), and \(\varvec{e}_l\) is the standard unit vector in \({\mathbb {R}}^M\).

In what follows, we will establish the reductions from the bilinear equations (140) in the KP hierarchy to the bilinear equations (137), thereby obtaining rogue wave solutions of the vector NLS equation (1). This procedure consists of several steps.

  1. i)

    Dimension reduction

    Note that

    $$\begin{aligned} \left( 2 \partial _x+\sum _{k=1}^M\sigma _k \rho _k^2 \partial _{v_k}\right) m_{i j}^{\textbf{n}}={\mathcal {A}}_i {\mathcal {B}}_j\left[ {\mathcal {G}}_M(p)+{\mathcal {H}}_M(q)\right] m^{\textbf{n}}, \end{aligned}$$
    (141)

    where

    $$\begin{aligned} {\mathcal {G}}_M(p)= \sum _{j=1}^M\frac{\sigma _j \rho _j^2}{p-\textrm{i} k_j} +2 p, \quad {\mathcal {H}}_M(q)= \sum _{j=1}^M\frac{\sigma _j \rho _j^2}{q+\textrm{i} k_j} +2 q. \end{aligned}$$
    (142)

    This implies that

    $$\begin{aligned} \left( 2 \partial _x+\sum _{k=1}^M\sigma _k \rho _k^2 \partial _{v_k}\right) m_{i j}^{\textbf{n}}&=\sum _{\mu =0}^i \frac{1}{\mu !}\left[ \left( f_1 \partial _p\right) ^\mu {\mathcal {G}}_M(p)\right] m_{i-\mu , j}^{\textbf{n}}\nonumber \\&\quad +\sum _{l=0}^j \frac{1}{l !}\left[ \left( f_2 \partial _q\right) ^l {\mathcal {H}}_M(q)\right] m_{i, j-l}^{\textbf{n}}. \end{aligned}$$
    (143)

    Then, we can use the method introduced in Yang and Yang (2021b) to find \(f_1(p)\) and \(f_2(q)\) such that

    $$\begin{aligned} \left( f_1 \partial _p\right) ^{M+1} {\mathcal {G}}_M(p)={\mathcal {G}}_M(p), \quad \left( f_2 \partial _q\right) ^{M+1} {\mathcal {H}}_M(q)={\mathcal {H}}_M(q). \end{aligned}$$
    (144)

    Specifically, by expressing \(f_1\) in the form

    $$\begin{aligned} f_1(p) = \dfrac{{\mathcal {U}}(p)}{ {\mathcal {U}}'(p)}, \end{aligned}$$
    (145)

    we can convert (144) into

    $$\begin{aligned} \partial _{\ln {\mathcal {U}}}^{M+1} {\mathcal {G}}_M(p)={\mathcal {G}}_M(p). \end{aligned}$$

    Normalize \({\mathcal {U}}(p_0) = 1\), then, under the condition that \(p_0\) is a root of \({\mathcal {G}}_M\) of multiplicity M, this equation admits the unique solution

    $$\begin{aligned} {\mathcal {G}}_M(p) = \dfrac{{\mathcal {G}}_M(p(0))}{M+1} \sum _{n=1}^{M+1} \exp \left( \exp \left( \dfrac{2 n \pi \textrm{i}}{M+1}\right) \ln {\mathcal {U}}(p)\right) . \end{aligned}$$
    (146)

    Then, \(f_1(p)\) can be obtained by using the relation (145) after solving this equation for \({\mathcal {U}}\). In a similar way, \(f_2(q)\) can be found.

    Choosing \(q_0 = p_0^*\) and using (144) and the assumption that \(p_0\) is a root of \({\mathcal {G}}'_M(p)=0\) of multiplicity M, the equation (143) reduces to

    $$\begin{aligned}{} & {} \left( 2 \partial _x+\sum _{k=1}^M\sigma _k \rho _k^2 \partial _{v_k}\right) m_{i j}^{\textbf{n}} \Big |_{p=p_0,q=q_0}\nonumber \\{} & {} \quad = {\mathcal {G}}_M(p_0) \sum _{\begin{array}{c} \mu =0 \\ \mu \equiv 0 (\text {mod } (M+1)) \end{array}}^i \frac{1}{\mu !} m_{i-\mu , j}^{\textbf{n}}+{\mathcal {H}}_M(q_0) \sum _{\begin{array}{c} l=0 \\ l \equiv 0 (\text {mod } (M+1)) \end{array}}^i \frac{1}{l !} m_{i, j-l}^{\textbf{n}} \Big |_{p=p_0,q=q_0}.\nonumber \\ \end{aligned}$$
    (147)

    Let \(N=N_1+N_2+\cdots +N_M\), where \(N_j, j=1,2,\cdots ,M,\) are positive integers, and define the determinant \(\tau _{\textbf{n}} \) by

    $$\begin{aligned} \tau _{\textbf{n}}=\det \left( \begin{array}{llll} \tau _{\textbf{n}}^{[1,1]} &{} \tau _{\textbf{n}}^{[1,2]}&{}\cdots &{}\tau _{\textbf{n}}^{[1,M]} \\ \tau _{\textbf{n}}^{[2,1]} &{} \tau _{\textbf{n}}^{[2,2]}&{}\cdots &{}\tau _{\textbf{n}}^{[2,M]} \\ \vdots &{} \vdots &{}\ddots &{}\vdots \\ \tau _{\textbf{n}}^{[M,1]} &{} \tau _{\textbf{n}}^{[M,2]}&{}\cdots &{}\tau _{\textbf{n}}^{[M,M]} \end{array}\right) , \end{aligned}$$
    (148)

    where

    $$\begin{aligned} \tau _{\textbf{n}}^{[I, J]}&=\textrm{mat}_{1 \le i \le N_I, 1 \le j \le N_J}\nonumber \\&\quad \left( \left. m_{(M+1) i-I, (M+1) j-J}^{\textbf{n}}\right| _{p=p_0, q=q_0, \xi _0=\xi _{0, I}, \eta _0=\eta _{0, J}}\right) , \quad 1 \le I, J \le M, \end{aligned}$$
    (149)

    and \(m_{i,j}^{\textbf{n}}\) is given by (139).

    With (147), we can use similar argument as in Ohta and Yang (2012) to show that the determinant \(\tau _{\textbf{n}}\) satisfies the dimensional reduction condition

    $$\begin{aligned} \left( 2 \partial _x+\sum _{k=1}^M\sigma _k \rho _k^2 \partial _{v_k}\right) \tau _{\textbf{n}} =N \left[ {\mathcal {G}}_M(p_0)+{\mathcal {H}}_M(q_0)\right] \tau _{\textbf{n}}. \end{aligned}$$
    (150)

    Therefore, we can use (150) to eliminate the variables \(v_j, j =1,2,\cdots ,M\), from the higher-dimensional bilinear system (140). As a result of this, we have

    $$\begin{aligned}&\left( D_x^2+\sum _{j=1}^M \sigma _j \rho _j^2\right) \tau _{\textbf{n}} \cdot \tau _{\textbf{n}} = \sum _{j=1}^M \sigma _j \rho _j^2 \tau _{\textbf{n}_{j,1}} \tau _{\textbf{n}_{j,-1}}\nonumber \\&\left( \textrm{i} D_t+D_x^2+2 \textrm{i} k_j D_x\right) \tau _{\textbf{n}_{j,1}} \cdot \tau _{\textbf{n}}=0,\quad j=1,2,\cdots ,M, \end{aligned}$$
    (151)

    where \(t = - \textrm{i} y\).

  2. ii)

    Complex conjugate reduction

    Impose the parameter constraint

    $$\begin{aligned} \xi _{0,I} = \eta _{0,I}^*, \end{aligned}$$

    and in view of \(p_0 = q_0^*\), we have \(\left[ f_1\left( p_0\right) \right] ^*=\) \(f_2\left( q_0\right) \). It then follows that

    $$\begin{aligned} \tau _{\textbf{n}} = \tau _{-\textbf{n}}^*. \end{aligned}$$
    (152)

    Define

    $$\begin{aligned} f=\tau _{\textbf{n}_0}, \quad g_j=\tau _{\textbf{n}_j}, \quad j=1,2,\cdots ,M, \end{aligned}$$
    (153)

    then the complex conjugacy condition (152) implies that f is real. Therefore, from (151) and (152), we conclude that the functions f and \(g_j\) satisfy the bilinear system (137), thereby yielding rational solutions to the vector NLS equation (1) via the transformation (138).

  3. iii)

    Introduction of free parameters

    We apply the method proposed in Yang and Yang (2021b) to introduce free parameters in the following form

    $$\begin{aligned} \xi _{0,I}=\sum _{n=1}^{\infty } a_{n,I} \ln ^{n} {\mathcal {U}}(p), \end{aligned}$$
    (154)

    where \({\mathcal {U}}(p)\) is defined by (145) and the \(a_{n,I}\)’s are free complex constants.

  4. iv)

    Simplification of solutions

    With the aid of the generator \({\mathcal {D}}\) of the differential operators \(\left( p \partial _p\right) ^k\left( q \partial _q\right) ^l\) given as

    $$\begin{aligned} {\mathcal {D}}=\sum _{k=0}^{\infty } \sum _{l=0}^{\infty } \frac{\kappa ^k}{k !} \frac{\lambda ^l}{l !}\left( p \partial _p\right) ^k\left( q \partial _q\right) ^l=\exp \left( \kappa p \partial _p+\lambda q \partial _q\right) =\exp \left( \kappa \partial _{\ln p}+\lambda \partial _{\ln q}\right) , \end{aligned}$$
    (155)

    we are able to simplify the solutions expressed by (153) using differential operators into the form of Schur polynomials as presented in Theorem 2.2. Since the computations are very similar to those in the three-wave system by Yang and Yang Yang and Yang (2021b), we omit the details.

Thus, the proof of Theorem 2.2 is completed.

Appendix C

In the first part of this appendix, we provide the values of \(N_1, N_2,N_3,N_4\) that appear in Theorem 2.4 in the following lemma.

Lemma 6.1

The values of \(\textbf{N}=(N_1, N_2,N_3,N_4)\) involved in Theorem 2.4 are characterized as follows.

  • When \(m \equiv 1 \mod 5\), we have

    $$\begin{aligned}{} & {} l=4: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( N_0, 0,0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] , N_0-\left[ \frac{m}{5}\right] ,0,0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] , N_0-2\left[ \frac{m}{5}\right] \right) , &{} 2\left[ \frac{m}{5}\right] +1 \le N_0 \le 3\left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] , N_0-3\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +1 \le N_0 \le 4\left[ \frac{m}{5}\right] \\ \left( m-1-N_0, m-1-N_0,m-1-N_0,m-1-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +1 \le N_0 \le m-1\end{array}\right. } \\{} & {} l=3: \textbf{N}\\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0,N_0, 0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( 0,\left[ \frac{m}{5}\right] , N_0-\left[ \frac{m}{5}\right] ,0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] \\ \left( 0,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] , N_0-2\left[ \frac{m}{5}\right] \right) , &{} 2\left[ \frac{m}{5}\right] +1 \le N_0 \le 3\left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] -1,N_0 -3\left[ \frac{m}{5}\right] -1\right) , &{} 3\left[ \frac{m}{5}\right] +1 \le N_0 \le 4\left[ \frac{m}{5}\right] +1 \\ \left( m-1-N_0,m-1-N_0,m-1-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +2 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=2: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,N_0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( 0,0,\left[ \frac{m}{5}\right] ,N_0-\left[ \frac{m}{5}\right] \right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] -1, N_0-2\left[ \frac{m}{5}\right] -1,0\right) , &{} 2\left[ \frac{m}{5}\right] +1 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -1\right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +1 \\ \left( m-1-N_0,m-1-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +2 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=1: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,0,N_0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] -1, N_0-\left[ \frac{m}{5}\right] -1,0,0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] , N_0-2\left[ \frac{m}{5}\right] -1,0\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -1\right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +1 \\ \left( m-1-N_0,m-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +2 \le N_0 \le m-1 \end{array}\right. } \end{aligned}$$
  • When \(m \equiv 2 \mod 5\), we have

    $$\begin{aligned}{} & {} l=4: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( N_0, 0,0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] ,0, N_0-\left[ \frac{m}{5}\right] ,0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] \\ \left( N_0-2\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,0,\left[ \frac{m}{5}\right] \right) &{} 2\left[ \frac{m}{5}\right] +1 \le N_0 \le 3\left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,N_0-3\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +1 \le N_0 \le 4\left[ \frac{m}{5}\right] \\ \left( m-1-N_0, m-1-N_0,m-1-N_0,m-1-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +1 \le N_0 \le m-1 \end{array}\right. } \\{} & {} \quad l=3: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0,N_0, 0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( 0,\left[ \frac{m}{5}\right] , 0,N_0-\left[ \frac{m}{5}\right] \right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( N_0-2\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,0,\left[ \frac{m}{5}\right] +1\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +1 \\ \left( m-1-N_0,m-1-N_0,m-1-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +2 \le N_0 \le m-1 \end{array}\right. } \\{} & {} \quad l=2: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,N_0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( N_0-\left[ \frac{m}{5}\right] -1,0,0,\left[ \frac{m}{5}\right] \right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,0,N_0-2\left[ \frac{m}{5}\right] -1, \left[ \frac{m}{5}\right] \right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] -1,N_0 -3\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0,m-1-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \\{} & {} \quad l=1: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,0,N_0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( N_0-\left[ \frac{m}{5}\right] -1,0,0,\left[ \frac{m}{5}\right] +1\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,0, N_0-2\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] +1\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0,m-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \end{aligned}$$
  • When \(m \equiv 3 \mod 5\), we have

    $$\begin{aligned}{} & {} l=4: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( N_0, 0,0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( \left[ \frac{m}{5}\right] ,0,0, N_0-\left[ \frac{m}{5}\right] \right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,N_0-2\left[ \frac{m}{5}\right] -1,0,\left[ \frac{m}{5}\right] \right) &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,N_0-3\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0, m-1-N_0,m-1-N_0,m-1-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=3: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0,N_0, 0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( N_0-\left[ \frac{m}{5}\right] -1,0,\left[ \frac{m}{5}\right] , 0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,0,\left[ \frac{m}{5}\right] ,N_0-2\left[ \frac{m}{5}\right] -1\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +2 \\ \left( \left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +3 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0,m-1-N_0,m-1-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=2: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,N_0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( N_0-\left[ \frac{m}{5}\right] -1,0,\left[ \frac{m}{5}\right] +1,0\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,0, \left[ \frac{m}{5}\right] +1,N_0-2\left[ \frac{m}{5}\right] -1\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,N_0 -3\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] +1,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +2 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0,m-1-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=1: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,0,N_0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( 0,N_0-\left[ \frac{m}{5}\right] -1,0,\left[ \frac{m}{5}\right] +1\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( \left[ \frac{m}{5}\right] ,N_0-2\left[ \frac{m}{5}\right] -2,0, \left[ \frac{m}{5}\right] \right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +2 \\ \left( \left[ \frac{m}{5}\right] -1,N_0 -3\left[ \frac{m}{5}\right] -3,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +3 \le N_0 \le 4\left[ \frac{m}{5}\right] +3 \\ \left( m-1-N_0,m-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +4 \le N_0 \le m-1 \end{array}\right. } \end{aligned}$$
  • When \(m \equiv 4 \mod 5\), we have

    $$\begin{aligned}{} & {} l=4: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( N_0, 0,0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] \\ \left( N_0-\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] ,0,0\right) , &{} \left[ \frac{m}{5}\right] +1 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( N_0-2\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,0\right) &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +2 \\ \left( N_0-3\left[ \frac{m}{5}\right] -3,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] \right) , &{} 3\left[ \frac{m}{5}\right] +3 \le N_0 \le 4\left[ \frac{m}{5}\right] +3 \\ \left( m-1-N_0, m-1-N_0,m-1-N_0,m-1-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. } \\{} & {} l=3: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0,N_0, 0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( N_0-\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] +1,0, 0,\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +1 \\ \left( N_0-2\left[ \frac{m}{5}\right] -2, \left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] +1,0\right) , &{} 2\left[ \frac{m}{5}\right] +2 \le N_0 \le 3\left[ \frac{m}{5}\right] +2 \\ \left( N_0 -3\left[ \frac{m}{5}\right] -3,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +3 \le N_0 \le 4\left[ \frac{m}{5}\right] +2 \\ \left( m-1-N_0,m-1-N_0,m-1-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +3 \le N_0 \le m-1 \end{array}\right. }\\{} & {} l=2: \textbf{N} \\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,N_0,0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( 0,N_0-\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] +1,0\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +2 \\ \left( N_0-2\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] +1, \left[ \frac{m}{5}\right] +1,0\right) , &{} 2\left[ \frac{m}{5}\right] +3 \le N_0 \le 3\left[ \frac{m}{5}\right] +2 \\ \left( N_0 -3\left[ \frac{m}{5}\right] -3,\left[ \frac{m}{5}\right] ,\left[ \frac{m}{5}\right] +1,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +3 \le N_0 \le 4\left[ \frac{m}{5}\right] +3 \\ \left( m-1-N_0,m-1-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +4 \le N_0 \le m-1 \end{array}\right. }\\{} & {} l=1: \textbf{N}\\{} & {} \quad = {\left\{ \begin{array}{ll} \left( 0, 0,0,N_0\right) , &{} 0 \le N_0 \le \left[ \frac{m}{5}\right] +1 \\ \left( 0,0,N_0-\left[ \frac{m}{5}\right] -1,\left[ \frac{m}{5}\right] +1\right) , &{} \left[ \frac{m}{5}\right] +2 \le N_0 \le 2\left[ \frac{m}{5}\right] +2 \\ \left( 0,N_0-2\left[ \frac{m}{5}\right] -2,\left[ \frac{m}{5}\right] +1, \left[ \frac{m}{5}\right] +1\right) , &{} 2\left[ \frac{m}{5}\right] +3 \le N_0 \le 3\left[ \frac{m}{5}\right] +3 \\ \left( N_0 -3\left[ \frac{m}{5}\right] -3,\left[ \frac{m}{5}\right] +1,\left[ \frac{m}{5}\right] +1,\left[ \frac{m}{5}\right] +1\right) , &{} 3\left[ \frac{m}{5}\right] +4 \le N_0 \le 4\left[ \frac{m}{5}\right] +3 \\ \left( m-1-N_0,m-N_0,m-N_0,m-N_0\right) , &{} 4\left[ \frac{m}{5}\right] +4 \le N_0 \le m-1. \end{array}\right. } \end{aligned}$$

In the second part of this appendix, we will prove Theorems 2.3 and 2.4 for root structures of the generalized Wronskian–Hermite polynomials \(W_N^{[m,k,l]}\). We only provide the proof for \(k=5\), \(l=4\) and \(m \equiv 1,2,3,4\mod 5\), as other cases can be proved in a similar manner.

Firstly, we define a new class of special Schur polynomials \(S_j^{[m]}(z; a)\) and the polynomials \(\widehat{W}_N^{[m,5,4]}(z; a)\) as

$$\begin{aligned} \sum _{j=0}^{\infty } S_j^{[m]}(z; a) \epsilon ^j= & {} \exp \left[ z \epsilon +a \epsilon ^m\right] , \end{aligned}$$
(156)
$$\begin{aligned} \widehat{W}_N^{[m,5,4]}(z; a)= & {} c_N^{[m,5,4]} \left| \begin{array}{cccc} S_4^{[m]}(z; a) &{} S_3^{[m]}(z; a) &{} \cdots &{} S_{5-N}^{[m]}(z; a) \\ S_9^{[m]}(z; a) &{} S_8^{[m]}(z; a) &{} \cdots &{} S_{10-N}^{[m]}(z; a) \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ S_{5 N-1}^{[m]}(z; a) &{} S_{5 N-2}^{[m]}(z; a) &{} \cdots &{} S_{4 N}^{[m]}(z; a) \end{array}\right| ,\nonumber \\ \end{aligned}$$
(157)

where a is a parameter, \(c_N^{[m,5,4]}\) is a constant defined in (3637), and \(S_j^{[m]}(z; a) \equiv 0 \) when \( j<0\). Compared with the generalized Wronskian–Hermite polynomials \(W_N^{[m,k,l]}\), the polynomials \(\widehat{W}_N^{[m,5,4]}(z; a)\) have a new parameter a. Note that the polynomials \(S_j^{[m]}(z; a)\) are related to \(p_j^{[m]}(z)\) by

$$\begin{aligned} S_j^{[m]}(z ; a)=a^{j / m} p_j^{[m]}(\hat{z}), \quad \hat{z}=a^{-1 / m} z. \end{aligned}$$
(158)

In addition, we have

$$\begin{aligned} \widehat{W}_N^{[m,5,4]}(z ; a)=a^{2N(N+1)/m} W_N^{[m,5,4]}(\hat{z}). \end{aligned}$$
(159)

From (158) and (159), we find that each term in the polynomial \(\widehat{W}_N^{[m]}(z; a)\) is a constant multiple of \(a^s z^k\) and \(k+ms=2N(N+1)\). This indicates that when the power of a is larger, the power of z is lower. Thus, to find the lowest order of z, it suffices to find the highest order of a. To this end, we rewrite the polynomials \(S_j^{[m]}(z; a)\) as

$$\begin{aligned} S_j^{[m]}(z ; a)=\sum _{n=0}^{[j / m]} \frac{a^n}{n !(j-n m) !} z^{j-n m} \end{aligned}$$
(160)

and substitute (160) into the determinant (156157). Note that coefficients of each \(a^sz^k\) in each row are proportional to each other, thus we can ignore them. In particular, for \(m=5r+1\), where r is positive integer, we get

$$\begin{aligned} \widehat{W}_N^{[m,5,4]}(z ; a) \sim c_N\left| \begin{array}{cccccccc} z^4 &{} z^3 &{} \cdots \\ \vdots &{} \vdots &{} \ddots \\ z^{5r-1} &{} z^{5r-2} &{} \cdots \\ a z^3 + \cdots &{} a z^2 + \cdots &{} \cdots \\ \vdots &{} \vdots &{} \ddots \\ a z^{5r-2}+z^{5r-2+m} &{} a z^{5r-3}+z^{5r-3+m} &{} \cdots \\ a^2 z^2 +a z^{2+m} + \cdots &{} a^2 z^1 +a z^{1+m} + \cdots &{} \cdots \\ \vdots &{} \vdots &{} \ddots \\ a^2 z^{5r-3} +a z^{5r-3+m} + \cdots &{} a^2 z^{5r-4} +a z^{5r-4+m} + \cdots &{} \cdots \\ a^3 z^1 +a^2 z^{1+m} + \cdots &{} a^3 z^0 +a^2 z^m + \cdots &{} \cdots \\ \vdots &{} \vdots &{} \ddots \\ a^3 z^{5r-4} +a^2 z^{5r-4+m} + \cdots &{} a^3 z^{5r-5} +a^2 z^{5r-5+m} + \cdots &{} \cdots \\ a^4 z^0 + a^3 z^m + \cdots &{} a^3 z^{5r} + \cdots &{} \cdots \\ \vdots &{} \vdots &{} \ddots \\ a^4 z^{5r}+a^3 z^{5r+m} + \cdots &{} a^4 z^{5r-1}+a^3 z^{5r-1+m} + \cdots &{} \cdots \\ \vdots &{} \vdots &{} \ddots \end{array}\right| .\nonumber \\ \end{aligned}$$
(161)

Next, we perform row operations to (161), which consist of several steps.

  1. 1.

    Note that the coefficients of the highest-order terms in a in the first column of (161) are periodic and one period is given by

    $$\begin{aligned} z^4 \cdots z^{5r-1};\quad z^3 \cdots z^{5r-2};\quad z^2 \cdots z^{5r-3};\quad z^1 \cdots z^{5r-4};\quad z^0 \cdots z^{5r}. \end{aligned}$$
    (162)

    According to this periodicity, we divide the determinants (161) into \(\left[ N/m\right] \) block matrices of size \( m \times N \) and one \(N_0 \times N\) block matrix, where \(N_0 \equiv N \mod m\). In addition, we divide the first column in each block into five parts, which have distinct initial powers in z, and the difference of the powers in z of consecutive terms in each part is 5. We denote the number of parts starting with power j by \(N_{5-j}, j=1, \dots , 4\).

  2. 2.

    We are only concerned with the first column of (161), since other columns have similar structures. According to the above discussions,

    we may use each part of the first block to cancel the highest-order terms in a of the corresponding parts for the subsequent blocks. After the first round row operations, the coefficients of the highest-order terms in a in the first column of the second block become

    $$\begin{aligned} z^{4+m} \cdots z^{5r-1+m}; z^{3+m} \cdots z^{5r-2+m}; z^{2+m} \cdots z^{5r-3+m}; z^{1+m} \cdots z^{5r-4+m}; z^m \cdots z^{5r+m}, \end{aligned}$$
    (163)

    and from the third to the last blocks, the corresponding coefficients change to \(z^{i+m}\) from \(z^i\). In the second round, we can use the second block to cancel the highest-order terms in a of the blocks below. Then, we continue this process until the last block. At the end of these operations, we can exchange the rows in each block such that the highest-order terms in a of the first column are

    $$\begin{aligned} z^0, z^1, z^2, \cdots , z^{5r}; z^m, z^{m+1}, z^{m+2},\cdots , z^{m+5r}; \cdots ; z^{km}, z^{km+1},z^{km+2},\cdots ,z^{km+5r};\cdots . \end{aligned}$$

    and the determinant (161) becomes

    $$\begin{aligned} \widehat{W}_{N \times N}^{[m,5,4]} \sim \left( \begin{array}{ccc} \textbf{L}_{\left( N-N_0\right) \times \left( N-N_0\right) } &{} \textbf{0}_{\left( N-N_0\right) \times N_0} \\ \textbf{M}_{N_0 \times \left( N-N_0\right) } &{} \widehat{W}_{N_0 \times N_0} \end{array}\right) \end{aligned}$$

    where \(\textbf{L}_{\left( N-N_0\right) \times \left( N-N_0\right) }\) is a lower triangular matrix whose diagonal entries are all 1.

  3. 3.

    Therefore, to calculate the lowest power of z of \(\widehat{W}_N^{[m,5,4]}(z; a)\), it suffices to compute the power of the reduced \(N_0 \times N_0\) determinant \(\widehat{W}_{N_0 \times N_0}\) and the final result is \(\Gamma \) as given in (42).

Next, we derive the factorization of \(W_N^{[m,5,4]}(z)\) provided in Theorem 2.4. Since the multiplicity of the zero root of \(W_N^{[m,5,4]}(z)\) is \(\Gamma \), we can write

$$\begin{aligned} W_N^{[m,5,4]}(z)=z^{\Gamma } q_N^{[m]}(z). \end{aligned}$$
(164)

Note that

$$\begin{aligned} p_j^{[m]}(\omega z)=\omega ^j p_j^{[m]}(z), \end{aligned}$$
(165)

where \(\omega \) is any of the m-th root of 1, i.e., \(\omega ^m=1\). From (164) and (165), we immediately have

$$\begin{aligned} W_N^{[m,5,4]}(\omega z)=\omega ^{2N(N+1)} W_N^{[m,5,4]}(z) \end{aligned}$$

and

$$\begin{aligned} q_N^{[m]}(\omega z)=\omega ^{2N(N+1)-\Gamma } q_N^{[m]}(z). \end{aligned}$$

Since \(2N(N+1)-\Gamma \) is a multiple of m, we have \(\omega ^{2N(N+1)-\Gamma }=1\), and hence,

$$\begin{aligned} q_N^{[m]}(\omega z)=q_N^{[m]}(z). \end{aligned}$$

This completes the proof.

Remark 9

We note that the row operations performed above are similar to those in the proof of rogue patterns in the inner region. For some special cases, such as \(m=4r+2\) in the three-component NLS equation, the proof needs some modifications similar to the proof of Theorem 2.3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Huang, P., Feng, BF. et al. Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation. J Nonlinear Sci 33, 116 (2023). https://doi.org/10.1007/s00332-023-09971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09971-5

Keywords

Mathematics Subject Classification

Navigation