Skip to main content
Log in

Analysis of Group of Fish Response to Startle Reaction

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In animal groups, startle reaction is classified among alarm reactions observed during anti-predatory or chemical reactions in the context of fear-inducing stimulation. For fish groups, this behavior often initiated by a few individuals in response to a strong stimulus is characterized by sudden and abrupt turns coupled to increasing speed that can initially disturb the group, but eventually increase group coordination as time evolves. Departing from these observations, we leverage a model of fish swimming to recreate startle reaction in terms of a biased stochastic jump diffusion process and to study their effects on the collective response of groups of fish. We contrast the effectiveness of the modeled startle reaction against a traditional approach to recreate leadership to find that for specific range values of occurrence rate and intensity, the fast turns initiated by a few individual can divert followers from their reference trajectory while keeping them aligned and in a closer proximity with the startled fish. For small noise perturbations, we propose a closed-form expression for the polarization order parameter which provides a good prediction of the group alignment as a function of the noise parameters. These findings offer evidence that startle reaction can be utilized to consistently recreate the emergence of leadership observed in animal groups with potential applications to multi-agent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are simulated from the model in (1) using the discrete-time scheme in (7) with parameters in Table 1.

References

  • Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112(1–2), 135–53 (2003)

    Article  MATH  Google Scholar 

  • Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–14 (2010)

    Article  Google Scholar 

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–7 (2008)

    Article  Google Scholar 

  • Bartolini, T., Mwaffo, V., Showler, A., Macrì, S., Butail, S., Porfiri, M.: Zebrafish response to 3D printed shoals of conspecifics: the effect of body size. Bioinspir. Biomim. 11(2), 026003 (2016)

    Article  Google Scholar 

  • Bass, S.L., Gerlai, R.: Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav. Brain Res. 186(1), 107–17 (2008)

    Article  Google Scholar 

  • Bellomo, N., Ha, S.Y., Outada, N.: Towards a mathematical theory of behavioral swarms. ESAIM Control Optim. Calc. Var. 26, 125 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Berdahl, A.M., Kao, A.B., Flack, A., Westley, P.A., Codling, E.A., Couzin, I.D., et al.: Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373(1746), 20170009 (2018)

    Article  Google Scholar 

  • Blaser, R., Penalosa, Y.: Stimuli affecting zebrafish (Danio rerio) behavior in the light/dark preference test. Physiol. Behav. 104(5), 831–7 (2011)

    Article  Google Scholar 

  • Blumenthal, T.D.: Presidential address 2014: the more-or-less interrupting effects of the startle response. Psychophysiology 52(11), 1417–31 (2015)

    Article  Google Scholar 

  • Brick, O.: Fighting behaviour, vigilance and predation risk in the cichlid fish Nannacara anomala. Anim. Behav. 56(2), 309–17 (1998)

    Article  Google Scholar 

  • Butail, S., Paley, D.A.: Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish. J. R. Soc. Interface 9(66), 77–88 (2012)

    Article  Google Scholar 

  • Butail, S., Ladu, F., Spinello, D., Porfiri, M.: Information flow in animal–robot interactions. Entropy 16(3), 1315–30 (2014)

    Article  Google Scholar 

  • Butail, S., Mwaffo, V., Porfiri, M.: Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Phys. Rev. E 93(4), 042411 (2016)

    Article  Google Scholar 

  • Cachat, J., Stewart, A., Grossman, L., Gaikwad, S., Kadri, F., Chung, K.M., et al.: Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5(11), 1786 (2010)

    Article  Google Scholar 

  • Calovi, D.S., Lopez, U., Ngo, S., Sire, C., Chaté, H., Theraulaz, G.: Swarming, schooling, milling: phase diagram of a data-driven fish school model. New J. Phys. 16(1), 015026 (2014)

    Article  Google Scholar 

  • Calovi, D.S., Lopez, U., Schuhmacher, P., Chaté, H., Sire, C., Theraulaz, G.: Collective response to perturbations in a data-driven fish school model. J. R. Soc. Interface 12(104), 20141362 (2015)

    Article  Google Scholar 

  • Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32(1), 10–1016 (2003)

    Google Scholar 

  • Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  • Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–6 (2005)

    Article  Google Scholar 

  • Couzin, I.D., Ioannou, C.C., Demirel, G., Gross, T., Torney, C.J., Hartnett, A., et al.: Uninformed individuals promote democratic consensus in animal groups. Science 334(6062), 1578–80 (2011)

    Article  Google Scholar 

  • Domenici, P.: The visually mediated escape response in fish: predicting prey responsiveness and the locomotor behaviour of predators and prey. Mar. Freshw. Behav. Physiol. 35(1–2), 87–110 (2002)

    Article  Google Scholar 

  • Eaton, R.C.: Neural Mechanisms of Startle Behavior. Springer, Berlin (1984)

    Book  Google Scholar 

  • Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., et al.: Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205(1), 38–44 (2009)

    Article  Google Scholar 

  • Frith, H., Blake, R.: Mechanics of the startle response in the northern pike, Esox lucius. Can. J. Zool. 69(11), 2831–9 (1991)

    Article  Google Scholar 

  • Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences. Springer, Berlin (1985)

    Book  Google Scholar 

  • Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., et al.: Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8(9), e1002678 (2012)

    Article  MathSciNet  Google Scholar 

  • Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2(4), 205–19 (2008)

    Article  Google Scholar 

  • Herbert-Read, J.E., Buhl, J., Hu, F., Ward, A.J., Sumpter, D.J.: Initiation and spread of escape waves within animal groups. R. Soc. Open Sci. 2(4), 140355 (2015)

    Article  Google Scholar 

  • Hoogland, R., Morris, D., Tinbergen, N.: The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour. 10, 205–36 (1956)

    Article  Google Scholar 

  • Jesuthasan, S.J., Mathuru, A.S.: The alarm response in zebrafish: innate fear in a vertebrate genetic model. J. Neurogenet. 22(3), 211–28 (2008)

    Article  Google Scholar 

  • Kalueff, A.V., Cachat, J.M.: Zebrafish Models in Neurobehavioral Research. Springer, New York (2011)

    Book  Google Scholar 

  • Krause, J., Godin, J.G.J.: Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): effects of predation risk, fish size, species composition and size of shoals. Ethology 98(2), 128–36 (1994)

    Article  Google Scholar 

  • Krause, J., Bumann, D., Todt, D.: Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). Behav. Ecol. Sociobiol. 30(3–4), 177–80 (1992)

    Article  Google Scholar 

  • Krause, J., Hoare, D., Krause, S., Hemelrijk, C., Rubenstein, D.: Leadership in fish shoals. Fish Fish. 1(1), 82–9 (2000)

    Article  Google Scholar 

  • Ladu, F., Butail, S., Macrì, S., Porfiri, M.: Sociality modulates the effects of ethanol in zebra fish. Alcohol. Clin. Exp. Res. 38, 1–9 (2014)

    Article  Google Scholar 

  • Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE Trans. Autom. Control 49(1), 30–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Marconi, U.M.B., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461(4–6), 111–95 (2008)

    Article  Google Scholar 

  • Mikulevičius, R., Platen, E.: Time discrete Taylor approximations for Itǒ processes with jump component. Math. Nachr. 138(1), 93–104 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, N., Garnier, S., Hartnett, A.T., Couzin, I.D.: Both information and social cohesion determine collective decisions in animal groups. Proc. Natl. Acad. Sci. 110(13), 5263–8 (2013)

    Article  Google Scholar 

  • Miller, T.H., Clements, K., Ahn, S., Park, C., Ji, E.H., Issa, F.A.: Social status-dependent shift in neural circuit activation affects decision making. J. Neurosci. 37(8), 2137–48 (2017)

    Article  Google Scholar 

  • Mwaffo, V., Porfiri, M.: Turning rate dynamics of zebrafish exposed to ethanol. Int. J. Bifurc. Chaos 25(07), 1540006 (2015a)

  • Mwaffo, V., Porfiri, M.: Linear analysis of the vectorial network model in the presence of leaders. Automatica 58, 160–6 (2015b)

  • Mwaffo, V., Porfiri, M.: Group coordination in a biologically-inspired vectorial network model. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pp. 303–310 (2016)

  • Mwaffo, V., Anderson, R.P., Butail, S., Porfiri, M.: A jump persistent turning walker to model zebrafish locomotion. J. R. Soc. Interface 12(102), 20140884 (2015a)

  • Mwaffo, V., Anderson, R.P., Porfiri, M.: Collective dynamics in the Vicsek and vectorial network models beyond uniform additive noise. J. Nonlinear Sci. 25(5), 1053–76 (2015b)

  • Mwaffo, V., Butail, S., Porfiri, M.: In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions. Sci. Rep. 7, 39877 (2017a)

  • Mwaffo, V., Butail, S., Porfiri, M.: Analysis of pairwise interactions in a maximum likelihood sense to identify leaders in a group. Front. Robot. AI 4, 35 (2017b)

  • Mwaffo, V., Keshavan, J., Hedrick, T.L., Humbert, S.: Detecting intermittent switching leadership in coupled dynamical systems. Sci. Rep. 8(1), 1–20 (2018)

    Article  Google Scholar 

  • Nakayama, S., Harcourt, J.L., Johnstone, R.A., Manica, A.: Initiative, personality and leadership in pairs of foraging fish. PLoS ONE 7(5), e36606 (2012)

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Peterson, R.O., Jacobs, A.K., Drummer, T.D., Mech, L.D., Smith, D.W.: Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus. Can. J. Zool. 80(8), 1405–12 (2002)

    Article  Google Scholar 

  • Rands, S.A., Cowlishaw, G., Pettifor, R.A., Rowcliffe, J.M., Johnstone, R.A.: Spontaneous emergence of leaders and followers in foraging pairs. Nature 423(6938), 432 (2003)

    Article  Google Scholar 

  • Reebs, S.G.: Can a minority of informed leaders determine the foraging movements of a fish shoal? Anim. Behav. 59(2), 403–9 (2000)

    Article  Google Scholar 

  • Reebs, S.G., Leblond, C.: Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas). Behaviour 143(10), 1263–80 (2006)

    Article  Google Scholar 

  • Rosenthal, S.B., Twomey, C.R., Hartnett, A.T., Wu, H.S., Couzin, I.D.: Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112(15), 4690–5 (2015)

    Article  Google Scholar 

  • Roy, S., Abaid, N.: On the effect of collaborative and antagonistic interactions on synchronization and consensus in networks of conspecific agents. IEEE Trans. Autom. Control 61(12), 4063–8 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Song, J., Ampatzis, K., Ausborn, J., El Manira, A.: A hardwired circuit supplemented with endocannabinoids encodes behavioral choice in zebrafish. Curr. Biol. 25(20), 2610–20 (2015)

    Article  Google Scholar 

  • Speedie, N., Gerlai, R.: Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188(1), 168–77 (2008)

    Article  Google Scholar 

  • Strandburg-Peshkin, A., Twomey, C.R., Bode, N.W., Kao, A.B., Katz, Y., Ioannou, C.C., et al.: Visual sensory networks and effective information transfer in animal groups. Curr. Biol. 23(17), R709-11 (2013)

    Article  Google Scholar 

  • Szimayer, A., Maller, R.: Testing for mean reversion in processes of Ornstein–Uhlenbeck type. Stat. Infer. Stoch. Process. 7(2), 95–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation models. PLoS ONE 10(5), e0126383 (2015)

    Article  Google Scholar 

  • Ulmer, M., Ziegelmeier, L., Topaz, C.M.: A topological approach to selecting models of biological experiments. PLoS ONE 14(3), e0213679 (2019)

    Article  Google Scholar 

  • Vernerey, F.J., Shen, T., Sridhar, S.L., Wagner, R.J.: How do fire ants control the rheology of their aggregations? A statistical mechanics approach. J. R. Soc. Interface 15(147), 20180642 (2018)

    Article  Google Scholar 

  • Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–9 (1995)

    Article  MathSciNet  Google Scholar 

  • Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., Somorjai, G., Nepusz, T., et al.: Flocking algorithm for autonomous flying robots. Bioinspir. Biomim. 9(2): 025012 (2014)

  • Zienkiewicz, A., Barton, D.A.W., Porfiri, M., Di Bernardo, M.: Leadership emergence in a data-driven model of zebrafish shoals with speed modulation. Eur. Phys. J. Spec. Top. 224(17–18), 3343–60 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Naval Academy.

Author information

Authors and Affiliations

Authors

Contributions

V.M. and F.V. designed the study, V.M. performed the numerical simulations, and V.M. and F.V. performed the analysis and wrote the manuscript.

Corresponding author

Correspondence to Violet Mwaffo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 42121 KB)

Appendix

Appendix

1.1 Alternative Distributions to Recreate Startle Response

See Fig. 10.

Fig. 10
figure 10

Group response measured by group alignment (first row) and group cohesion (second row) by varying the jump frequency \(\iota \) and intensity \(\delta \) for two additional distributions (the right shifted normal distribution and the uniform shifted distribution) with identical mean and variance as the half-normal distribution. Group size is \(N=10\) fish and a \(100 \times 100\) grid size is considered for \(\iota \) and \(\delta \). Model parameters are in Table 1

1.2 Stability Analysis

We study here group response to small perturbations introduced at a closer proximity of the coordinated state when all particles tend to align their heading angle with a reference state. Similar to Calovi et al. (2015), the coupled dynamical system defined in Eqs. (1) and (3) can be compared to particles interacting through attractive and repulsive forces which tend to align them in a direction prescribed by the informed fish acting as an attraction field. Introducing the polarization P measuring the degree of order in the system, group response to small perturbations denoted P-susceptibility is equivalent up to a constant factor to the fluctuation of the order parameter P (Calovi et al. 2015; Marconi et al. 2008):

$$\begin{aligned} N\left[ \langle P^2\rangle - \langle P\rangle ^2\right] = \frac{\partial P}{\partial x }_{|x=0}, \end{aligned}$$
(13)

where \(\langle P\rangle = \lim _{T\rightarrow \infty } 1/(T-T_r) \sum _{k=T_r}^{T} P(k)\), and x is associated with the perturbation field. In our system, for a fixed value of \(\varsigma \), the perturbation field is essentially characterized by the jumps parameters \(\iota \) and \(\delta \). We seek to establish a closed-form expression to quantify group response measured by the alignment order parameter to small variations of \(\iota \) and \(\delta \).

We note that in a closer proximity of the coordinated state, all individuals share a quasi-identical heading direction such that \(\theta _{ij} \simeq 0\) for all ij. In addition, the order parameter (proposed in (9) in terms of the cosine similarity) is identical to the polarization order parameter (\(\mathrm {Pol}\)), that is, \(\lim _{k\rightarrow \infty } \mathbf {E}\left[ P(k)\right] =\lim _{k\rightarrow \infty } \mathbf {E}\left[ \mathrm {Pol}\right] \) at a closer proximity of the coordinated state. We leverage a mean square stability study of a similar stochastic double integrator introduced in Mwaffo et al. (2015b), Mwaffo and Porfiri (2016) to propose a closed-form expression of the polarization order parameter of the system in (7). To proceed, we introduce \(\tilde{w}_i(k) = w_i(k) - w_i^\star (k)\) in order to transform (7) into the following system:

$$\begin{aligned} \begin{aligned} \theta _i(k+1)&= \theta _i(k) + w_i^\star (k)\Delta \tau + \tilde{w}_i(k)\Delta \tau \\ \tilde{w}_i(k+1)&= \tilde{w}_i(k) e^{- \Delta \tau } + \varsigma \sqrt{\frac{1}{2}\left( 1-e^{-2 \Delta \tau }\right) } \varepsilon _i(k) + \delta \Delta \nu _i(k\Delta \tau ) \zeta _i(k), \end{aligned} \end{aligned}$$
(14)

where \(w_i^\star (k) = w_i^\star (\tau _k)\) is defined in (4b). Now considering that \(\Delta \tau \) is small enough, the above system can be reduced to:

$$\begin{aligned} \begin{aligned} \theta _i(k+1)&= \theta _i(k) + w_i^\star (k)\Delta \tau + \tilde{w}_i(k+1) \Delta \tau \\ \tilde{w}_i(k+1)&= (1-\Delta \tau )\tilde{w}_i(k) + \varsigma \sqrt{\Delta \tau } \varepsilon _i(k) + \delta \Delta \nu _i(k\Delta \tau ) \zeta _i(k), \end{aligned} \end{aligned}$$
(15)

where \(w_i^\star (k) = w_i^\star (\tau _k)\) is defined in (4b). Considering small misalignment (\(\theta _{ij} \ll 1\)) between pair of fish i and j, one can estimate \(\sin \left( \theta _{ij}(k)\right) \simeq \theta _{ij}(k)\) and \(\phi _{ij}(k)\simeq \frac{\pi }{2}\). This allows us to obtain the following discrete-time double integrator system:

$$\begin{aligned} \begin{aligned} \theta _i(k+1)&= \theta _i(k) + \kappa _v\Delta \tau \sum _{j\in \mathcal {N}_i(k)}^{} \theta _{ij}(k) + \tilde{w}(k)\Delta \tau \\ \tilde{w}_i(k+1)&= \left( 1-\Delta \tau \right) \tilde{w}_i(k) + \varsigma \sqrt{\Delta \tau } \varepsilon _i(k) + \delta \Delta \nu _i(k\Delta \tau ) \zeta _i(k). \end{aligned} \end{aligned}$$
(16)

We consider that informed fish (resp. startled fish) independently share common heading angle between each subgroup individuals such that, in the following development, we consider group with a single informed fish and a single startle response fish. Since the informed fish move independently from other fish and its heading angle is the reference state, stability of the local disagreement \(\theta _i - \theta _0\) of the system can be studied for the \(N-1\) other fish at the proximity of a constant heading angle \(\theta _0\) characterizing the coordinated state and taken as the reference state.

In the proximity of a given ordered state \(\theta _0\), a mean square stability analysis over the system in (16) has been proposed in Mwaffo et al. (2015b), Mwaffo and Porfiri (2016) for the vectorial network model (VNM). We recall that the VNM model introduced in Aldana and Huepe (2003) is a simplification of the classical Vicsek model in the limit of larger speed where particles are considered to interact at any time instant with randomly selected particles in the group. This simplification is in particular true for small particle size where it is more likely that all particles interact with each other. In Mwaffo et al. (2015b), Mwaffo and Porfiri (2016), a linear approximation of the polarization order parameter is proposed and adapted for \(N-1\) particles as:

$$\begin{aligned} \mathrm {Pol}(k) = \frac{1}{N-1} \sum _{i=1}^{N-1} \mathbf {v}_i= \frac{1}{N-1} \Big |\sum _{i=1}^{N-1} e^{\iota \theta _i(k)} \Big | \simeq 1-\frac{1}{2(N-1)}\rho (k), \end{aligned}$$

where \(\mathbf {v}_i\) is the unit velocity vector, \(\iota \) is the imaginary index, and \(\rho (k) = \mathbf {E}\left[ \sum _{i=1}^{N-1} \left( \theta _i(k) - \theta _0\right) ^2\right] \) is the steady state deviation from the common synchronized state (see, for example, Mwaffo and Porfiri 2015b). For small noise values, when \(0<\left( 1-\Delta \tau \right) ^2 < 1\), the steady-state deviation \(\rho \) has been shown in (Mwaffo et al. 2015b; Mwaffo and Porfiri 2016) to converge toward a finite value. This yields after identification to a closed-form expression of the polarization as:

$$\begin{aligned} \mathrm {Pol} \simeq 1 - \frac{(\varsigma ^2\Delta \tau + \lambda \gamma ^2)}{2}\frac{N-2}{N-1} = 1-\frac{({\varsigma ^2}\Delta \tau +\iota \delta ^2)}{2}\frac{N-2}{N-1} \end{aligned}$$
(17)

where the number of connected neighbors is set to \(|\mathcal {N}_i| = N-1\).

1.3 Group Response Evaluated with the Combined Parameter \(P \wedge C\)

See Fig. 11.

Fig. 11
figure 11

Group coordination measured by the combined parameter \(P \wedge C\) with respect to the informed fish (a) and with respect to the startle response fish (b) by varying the jump frequency \(\iota \) and the jump intensity \(\delta \). In the color maps, the alignment index P and the cohesion index C are identical to the parameters estimated in Fig. 7

1.4 Group Formation Pattern After Escape Response

See Fig. 12.

Fig. 12
figure 12

Typical formation patterns observed after escape response for a smaller frequencies of the jump (\(\iota = 0.022\) and \(\delta =0.334\)) resulting in fish aligning their heading in a direction prescribed by the startle fish and for b larger frequencies of the jump (\(\iota = 0.0696\) and \(\delta =0.334\)) resulting in a circular motion. Other parameters are reported in Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwaffo, V., Vernerey, F. Analysis of Group of Fish Response to Startle Reaction. J Nonlinear Sci 32, 96 (2022). https://doi.org/10.1007/s00332-022-09855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09855-0

Keywords

Mathematics Subject Classification

Navigation