Skip to main content
Log in

Dynamic Mode Decomposition for Continuous Time Systems with the Liouville Operator

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Dynamic mode decomposition (DMD) has become synonymous with the Koopman operator, where continuous time dynamics are discretized and examined using Koopman (i.e. composition) operators. Using the newly introduced “occupation kernels,” the present manuscript develops an approach to DMD that treats continuous time dynamics directly through the Liouville operator. This manuscript outlines the technical and theoretical differences between Koopman-based DMD for discrete time systems and Liouville-based DMD for continuous time systems, which includes an examination of Koopman and Liouville operators over several reproducing kernel Hilbert spaces. While Liouville operators are modally unbounded, this manuscript introduces the concept of a scaled Liouville operator, which, for many dynamical systems, is a compact operator over the native space of the exponential dot product kernel. Compactness of scaled Liouville operators allows for norm convergence of Liouville-based DMD, which is a decided advantage over Koopman-based DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It should be noted that the operator \(P_{\alpha _M} A_{f,a} P_{\alpha _M}\) is simply \(P_{\alpha _M} A_{f,a}\) when restricted to \({{\,\mathrm{span}\,}}(\alpha _M)\) as \(P_{\alpha _M} g = g\) for all \(g \in {{\,\mathrm{span}\,}}(\alpha _M)\).

References

  • Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  • Bakardjian, H., Tanaka, T., Cichocki, A.: Optimization of SSVEP brain responses with application to eight-command brain-computer interface. Neurosci. Lett. 469(1), 34–38 (2010)

    Article  Google Scholar 

  • Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J. Neural Eng. 6(4), 046002 (2009)

    Article  Google Scholar 

  • Bittracher, A., Koltai, P., Junge, O.: Pseudogenerators of spatial transfer operators. SIAM J. Appl. Dyn. Syst. 14(3), 1478–1517 (2015)

    Article  MathSciNet  Google Scholar 

  • Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos Interdiscip. J. Nonlinear Sci. 22(4), 047510 (2012)

    Article  MathSciNet  Google Scholar 

  • Carswell, B., MacCluer, B.D., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. (Szeged) 69(3–4), 871–887 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cichella, V., Kaminer, I., Dobrokhodov, V., Xargay, E., Choe, R., Hovakimyan, N., Aguiar, A.P., Pascoal, A.M.: Cooperative path following of multiple multirotors over time-varying networks. IEEE Trans. Autom. Sci. Eng. 12(3), 945–957 (2015)

    Article  Google Scholar 

  • Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Education, New York (1955)

    MATH  Google Scholar 

  • Cowen, C.C., Jr., MacCluer, B.I.: Composition Operators on Spaces of Analytic Functions, vol. 20. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  • Črnjarić-Žic, N., Maćešić, S., Mezić, I.: Koopman operator spectrum for random dynamical systems. J. Nonlinear Sci. 30, 2007–2056 (2020)

    Article  MathSciNet  Google Scholar 

  • Cvitanovic, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G., Whelan, N., Wirzba, A.: Chaos: Classical and Quantum. ChaosBook. org. Niels Bohr Institute, Copenhagen (2005)

    Google Scholar 

  • Das, S., Giannakis, D.: Koopman spectra in reproducing kernel Hilbert spaces. Appl. Comput. Harm. Anal. 49(2), 573–607 (2020)

    Article  MathSciNet  Google Scholar 

  • Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  • Froyland, G., González-Tokman, C., Quas, A.: Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. J. Comput. Dyn. 1(2), 249–278 (2014)

    Article  MathSciNet  Google Scholar 

  • Giannakis, D.: Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harm. Anal. 47(2), 338–396 (2019)

    Article  MathSciNet  Google Scholar 

  • Giannakis, D., Das, S.: Extraction and prediction of coherent patterns in incompressible flows through space-time Koopman analysis. Physica D 402, 132211 (2020)

    Article  MathSciNet  Google Scholar 

  • Giannakis, D., Kolchinskaya, A., Krasnov, D., Schumacher, J.: Koopman analysis of the long-term evolution in a turbulent convection cell. arXiv:1804.01944 (2018)

  • Gonzalez, E., Abudia, M., Jury, M., Kamalapurkar, R., Rosenfeld, J.A.: Anti-koopmanism. arXiv:2106.00106v2 (2021)

  • Gruss, L.F., Keil, A.: Sympathetic responding to unconditioned stimuli predicts subsequent threat expectancy, orienting, and visuocortical bias in human aversive Pavlovian conditioning. Biol. Psychol. 140, 64–74 (2019)

    Article  Google Scholar 

  • Haddad, W.: A Dynamical Systems Theory of Thermodynamics. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2019)

    Book  Google Scholar 

  • Hallam, T.G., Levin, S.A.: Mathematical Ecology: An Introduction, vol. 17. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Google Scholar 

  • Jury, M.T.: C*-algebras generated by groups of composition operators. Indiana Univ. Math. J. 56(6), 3171–3192 (2007)

  • Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  • Klus, S., Nüske, F., Peitz, S., Niemann, J.H., Clementi, C., Schütte, C.: Data-driven approximation of the Koopman generator: model reduction, system identification, and control. Physica D 406, 132416 (2020)

    Article  MathSciNet  Google Scholar 

  • Korda, M., Mezić, I.: On convergence of extended dynamic mode decomposition to the Koopman operator. J. Nonlinear Sci. 28(2), 687–710 (2018)

    Article  MathSciNet  Google Scholar 

  • Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Philadelphia (2016)

    Book  Google Scholar 

  • Luery, K.E.: Composition Operators on Hardy Spaces of the Disk and Half-Plane. University of Florida, Gainesville (2013)

    Google Scholar 

  • Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    Article  MathSciNet  Google Scholar 

  • Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2013)

    Article  MathSciNet  Google Scholar 

  • Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8(2), 211–214 (2000)

    Article  Google Scholar 

  • Pedersen, G.K.: Analysis Now, Graduate Texts in Mathematics, vol. 118. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  • Petro, N.M., Gruss, L.F., Yin, S., Huang, H., Miskovic, V., Ding, M., Keil, A.: Multimodal imaging evidence for a frontoparietal modulation of visual cortex during the selective processing of conditioned threat. J. Cogn. Neurosci. 29(6), 953–967 (2017)

    Article  Google Scholar 

  • Regan, D.: Human brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier, Amsterdam (1989)

    Google Scholar 

  • Rosenfeld, J.A.: Densely defined multiplication on several Sobolev spaces of a single variable. Complex Anal. Oper. Theory 9(6), 1303–1309 (2015a)

    Article  MathSciNet  Google Scholar 

  • Rosenfeld, J.A.: Introducing the polylogarithmic hardy space. Integral Equ. Oper. Theory 83(4), 589–600 (2015b)

    Article  MathSciNet  Google Scholar 

  • Rosenfeld, J.A.: The Sarason sub-symbol and the recovery of the symbol of densely defined Toeplitz operators over the Hardy space. J. Math. Anal. Appl. 440(2), 911–921 (2016)

    Article  MathSciNet  Google Scholar 

  • Rosenfeld, J.A., Kamalapurkar, R.: Dynamic mode decomposition with control Liouville operators. In: IFAC-PapersOnLine, vol. 54, pp. 707–712 (2021)

  • Rosenfeld, J.A., Kamalapurkar, R., Gruss, L.F., Johnson, T.T.: On occupation kernels, Liouville operators, and dynamic mode decomposition. In: Proceedings of the American Control Conference, pp. 3957–3962. New Orleans, LA, USA (2021)

  • Rosenfeld, J.A., Kamalapurkar, R., Russo, B., Johnson, T.T.: Occupation kernels and densely defined Liouville operators for system identification. In: Szafraniec are Ramirez de Arellano, E. and Shapiro, M. V. and Tovar, L. M. and Vasilevski N. L. Proceedings of the IEEE Conference on Decision and Control, pp. 6455–6460 (2019a)

  • Rosenfeld, J.A., Russo, B., Kamalapurkar, R., Johnson, T.T.: The occupation kernel method for nonlinear system identification. arXiv:1909.11792 (2019b)

  • Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  • Szafraniec, F.H.: The reproducing kernel Hilbert space and its multiplication operators. In: Ramirez de Arellano, E., Shapiro, M. V., Tovar, L. M., Vasilevski N. L. (eds.) Complex Analysis and Related Topics, pp. 253–263. Springer (2000)

  • Tóth, J., Nagy, A.L., Papp, D.: Reaction Kinetics: Exercises, Programs and Theorems. Springer, Berlin (2018)

    MATH  Google Scholar 

  • Walters, P., Kamalapurkar, R., Voight, F., Schwartz, E.M., Dixon, W.E.: Online approximate optimal station keeping of a marine craft in the presence of an irrotational current. IEEE Trans. Robot. 34(2), 486–496 (2018)

    Article  Google Scholar 

  • Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015a)

  • Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2(2), 247–265 (2015b)

Download references

Acknowledgements

This research was supported by the Air Force Office of Scientific Research under Contract Numbers FA9550-20-1-0127, FA9550-18-1-0122 and FA9550-21-1-0134, the Air Force Research Laboratory under contract number FA8651-19-2-0009, and the National Science Foundation under grant numbers 2027976, 2027999, and 2028001. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Rosenfeld.

Additional information

Communicated by Oliver Junge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A subset of the results in this manuscript was presented at the 2021 American Control Conference and is published in the proceedings (Rosenfeld et al. 2021). A YouTube Playlist supporting the content of this manuscript (including MATLAB code) may be found here: https://youtube.com/playlist?list=PLldiDnQu2phuIdps0DcIQJ_gF0YIb-g6y.

Proofs of Theorem 1 and Proposition  2

Proofs of Theorem 1 and Proposition  2

Theorem 1 restated: Let \(F^2({\mathbb {R}}^n)\) be the Bargmann-Fock space of real valued functions, which is the native space for the exponential dot product kernel, \(K(x,y) = \exp (x^Ty)\), \(a \in {\mathbb {R}}\) with \(|a| < 1\), and let \(A_{f,a}\) be the scaled Liouville operator with symbol \(f:{\mathbb {R}}^n \rightarrow {\mathbb {R}}^n\). There exists a collection of coefficients, \(\{ C_\alpha \}_{\alpha }\), indexed by the multi-index \(\alpha \), such that if f is representable by a multi-variate power series, \(f(x) = \sum _{\alpha } f_\alpha x^\alpha \), satisfying

$$\begin{aligned} \sum _{\alpha } |f_{\alpha }| C_\alpha < \infty , \end{aligned}$$

then \(A_{f,a}\) is bounded and compact over \(F^2({\mathbb {R}}^n)\).

Proof

The proof for the case \(n = 1\) is presented to simplify the exposition. The case for \(n > 1\) follows with some additional bookkeeping of the multi-index.

If \(A_{x,a}\) is compact for all \(|a| < 1\), then \(A_{x^m,a} = A^{m}_{x,\root m \of {a}}\) is compact since products of compact operators are compact. If \(f(x) = \sum _{m=0}^\infty f_m x^m\) is such that \(\sum _{m=0}^\infty |f_m| \Vert A_{x^m,a}\Vert < \infty \), then \(A_{f,a} = \lim _{m\rightarrow \infty } \sum _{m=0}^M f_m A_{x^m,a},\) with respect the operator norm via the triangle inequality, and \(A_{f,a}\) is compact since it is the limit of compact operators. Thus, it is sufficient to demonstrate that \(A_{x,a}\) is compact to prove the theorem.

Let \(g \in F^{2}({\mathbb {R}})\), then \(g(x) = \sum _{m=0}^\infty g_m \frac{x^m}{\sqrt{m!}}\) with norm \(\Vert g \Vert _{F^{2}({\mathbb {R}})}^2 = \sum _{m=0}^\infty |g_m|^2 < \infty .\) Applying the scaled Liouville operator, \(A_{x,a}\), yields

$$\begin{aligned}A_{x,a} g(x) = axg'(ax) = \sum _{m=0}^\infty g_{m} a^m m \frac{x^m}{\sqrt{m!}}. \end{aligned}$$

Hence, \(\Vert A_{x,a} g \Vert _{F^({\mathbb {R}})}^2 = |a|^{2m} m^2 |g_{m}|^2 < \infty \) as for large enough m, \(|a|^{2m} m^2 < 1\). Hence, \(A_{x,a}\) is everywhere defined and by the closed graph theorem \(A_{x,a}\) is bounded.

As \(|a|^{m} m^2 \rightarrow 0\), there is an M such that for all \(m > M\), \(|a|^{m} m^2 < 1\). Let \(P_M\) be the projection onto \({{\,\mathrm{span}\,}}\{ 1, x, x^2, \ldots , x^M\}\). Now consider

$$\begin{aligned} \Vert (A_{x,a} - A_{x,a} P_M) g\Vert ^2&= \sum _{m=M+1}^\infty |g_{m}|^2 |a|^{2m} m^2\\&\le \sum _{m=M+1}^\infty |g_{m}|^2 |a|^{m} \\&\le |a|^M \sum _{m=M+1}^\infty |g_{m}|^2 |a|^{m-M} \\&\le |a|^M \sum _{m=M+1}^\infty |g_{m}|^2 \le |a|^M \Vert g \Vert _{F^2({\mathbb {R}})}^2. \end{aligned}$$

Hence, the operator norm of \((A_{x,a} - A_{x,a} P_M)\) is bounded by \(|a|^{M/2}\), and as \(|a| < 1\), \(A_{x,a} P_m \rightarrow A_{x,a}\) in the operator norm. \(P_m\) is finite rank and therefore compact. It follows that \(A_{x,a} P_m\) is compact, since compact operators form an ideal in the ring of bounded operators. Thus, \(A_{x,a}\) is compact as it is the limit of compact operators. \(\square \)

Proposition 2restated: Let H be a RKHS of twice continuously differentiable functions over \({\mathbb {R}}^n\), f be Lipschitz continuous, and suppose that \(\varphi _{i,a}\) is an eigenfunction of \(A_{f,a}\) with eigenvalue \(\lambda _{i,a}\). Let D be a compact subset of \({\mathbb {R}}^n\) that contains x(t) for all \(0< t < T\). In this setting, if \(\lambda _{i,a} \rightarrow \lambda _{i,1}\) and \(\varphi _{i,a}(x(0)) \rightarrow \varphi _{i,1}(x(0))\) as \(a \rightarrow 1^-\), then

$$\begin{aligned} \sup _{0 \le t \le T} \Vert \varphi _{i,a}(x(t)) - e^{\lambda _{i,a}t}\varphi _{i,a}(x(0))\Vert _2 \rightarrow 0. \end{aligned}$$

Proof

Suppose that x(t) remains in a compact set \(D \subset {\mathbb {R}}^n\). Since \(\phi _{m,a} \in H\) and H consists of twice continuously differentiable functions, there exists \(M_1,M_2,F > 0\) such that

$$\begin{aligned} \sup _{x \in D} \Vert f(x) \Vert< F \quad \sup _{x \in D}, \Vert \nabla \phi _{m,a}(x) \Vert< M_{1,a}, \text { and} \quad \sup _{x \in D} \Vert \nabla ^2\phi _{m,a}(x) \Vert < M_{2,a}. \end{aligned}$$

First, it is necessary to demonstrate that \(M_{1,a}\) and \(M_{2,a}\) may be bounded independent of a. For each \(i,j=1,\ldots ,n\) and \(y \in {\mathbb {R}}^n\), the functionals \(g \mapsto \frac{\partial }{\partial x_i} g(y)\) and \(g \mapsto \frac{\partial ^2}{\partial x_i \partial x_j} g(y)\) are bounded (cf. Steinwart and Christmann 2008). Setting, \(k_{y} = K(\cdot ,y)\), it can be seen that the functions \(\frac{\partial }{\partial x_i} k_y\) and \(\frac{\partial ^2}{\partial x_i \partial x_j} k_y\) are the unique functions that represent these functionals through the inner product of the RKHS (cf. Steinwart and Christmann 2008). As \(\phi _{m,a}\) is a normal vector, \(\Vert \phi _{m,a} \Vert _H = 1\), and by Cauchy-Schwarz

$$\begin{aligned} \Vert \nabla \phi _{m,a}(y) \Vert _2&= \sqrt{ \sum _{i=1}^n \left( \frac{\partial }{\partial x_i} \phi _{m,a}(y) \right) ^2}\nonumber \\&= \sqrt{\sum _{i=1}^n \left( \left\langle \phi _{m,a}, \frac{\partial }{\partial x_i} k_y \right\rangle _H \right) ^2}\nonumber \\&\le \sqrt{\sum _{i=1}^n \left\| \phi _{m,a}\right\| _H^2 \left\| \frac{\partial }{\partial x_i} k_y \right\| _H^2}\nonumber \\&= \sqrt{ \sum _{i=1}^n \left\| \frac{\partial }{\partial x_i} k_y \right\| _H^2 }. \end{aligned}$$
(13)

(13) is bounded over D as \(x \mapsto \frac{\partial }{\partial x_i} k_y(x)\) is continuous. Thus, \(M_{1,a}\) is bounded independent of a. A similar argument may be carried out for \(M_{2,a}\). Let \(M_1\) and \(M_2\) be the respective bounding constants.

Note that

$$\begin{aligned} \frac{\partial }{\partial t} \phi _{m,a}(ax(t)) = a \nabla \phi _{m,a}(a x(t)) f(x(t)) = A_{f,a} \phi _{m,a}(x(t)) = \mu _{m,a} \phi _{m,a}(x(t)). \end{aligned}$$

Then by the mean value inequality, Cauchy-Schwarz, and the bounds given above,

$$\begin{aligned}&\left| \frac{\partial }{\partial t} \phi _{m,a}(ax(t)) - \frac{\partial }{\partial t} \phi _{m,a}(x(t))\right| \\&\quad = \left| a \nabla \phi _{m,a}(a x(t)) f(x(t)) - \nabla \phi _{m,a}(x(t)) f(x(t))\right| \\&\quad \le F\left\| a \nabla \phi _{m,a}(a x(t)) - a\nabla \phi _{m,a}(x(t)) + a\nabla \phi _{m,a}(x(t)) - \nabla \phi _{m,a}(x(t)) \right\| _2\\&\quad \le |a|F\left\| \nabla \phi _{m,a}(a x(t)) - \nabla \phi _{m,a}(x(t)) \right\| _2 + F|a-1| M_1 \Vert x(t)\Vert _2\\&\quad \le |a||a-1| M_2 F \Vert x(t)\Vert _2 + |a-1| M_1 F \Vert x(t)\Vert _2 = O(|a-1|). \end{aligned}$$

Setting \(\epsilon _a(t) := \frac{\partial }{\partial t} \phi _{m,a}(ax(t)) - \frac{\partial }{\partial t} \phi _{m,a}( x(t))\), it follows that \(\sup _{0 \le t \le T} \Vert \epsilon _a(t) \Vert _2 = O(|a-1|)\). Hence,

$$\begin{aligned} \mu _{m,a} \phi _{m,a}(x(t))&= \frac{\partial }{\partial t} \phi _{m,a}(a x(t))\\&= \frac{\partial }{\partial t} \phi _{m,a}(x(t)) + \epsilon (t), \end{aligned}$$

and

$$\begin{aligned} \phi _{m,a}(x(t)) = e^{\mu _{m,a}t} \phi _{m,a}(x(0)) - e^{\mu _{m,a}t} \int _0^t e^{-\mu _{m,a} \tau } \epsilon (\tau ) d\tau . \end{aligned}$$

As the time interval is fixed to [0, T], \(e^{\mu _{m,a}t} \int _0^t e^{-\mu _{m,a} \tau } \epsilon (\tau ) d\tau = O(|a-1|),\) since \(\mu _{m,a}\) is bounded with respect to a. \(\square \)

Theorem 2restated: Let \(|a| < 1\). Suppose that \(\{ \gamma _{i}:[0,T_i] \rightarrow {\mathbb {R}}^n \}_{i=1}^\infty \) is a sequence of trajectories satisfying \({\dot{\gamma }} = f(\gamma )\) for a dynamical system f corresponding to a compact scaled Liouville operator, \(A_{f,a}\). If the collection of functions, \(\{ \varGamma _{\gamma _i} \}_{i=1}^\infty \) is dense in the Bargmann-Fock space, then the sequence of operators \(\{ P_{\alpha _M} A_{f,a} P_{\alpha _M} \}_{M=1}^\infty \) converges to \(A_{f,a}\) in the norm topology, where \(\alpha _M = \{ \varGamma _{\gamma _1}, \ldots , \varGamma _{\gamma _M} \}\).

Proof

The following proof is more general than what is indicated in the theorem statement of Theorem 2. In fact, for any compact operator, T, and any set \(\{ g_i \}_{i=1}^\infty \) such that \(\overline{{{\,\mathrm{span}\,}}(\{g_i\}_{i=1}^\infty )} = H\), the sequence of operators \(P_{\alpha _M} T P_{\alpha _M} \rightarrow T\) in norm, where \(P_{\alpha _M}\) is the projection onto \({{\,\mathrm{span}\,}}(\{g_i\}_{i=1}^M)\). Henceforth, it will be assumed that \(\{ g_i \}_{i=1}^\infty \) is an orthonormal basis for H, since given any complete basis in H, an orthonormal basis may be obtained via the Gram-Schmidt process.

First note that every compact operator has a representation as \(T = \sum _{i=1}^\infty \lambda _i \langle \cdot , v_i \rangle _H u_i\), where \(\{ v_i \}\) and \(\{ u_i \}\) are orthonormal collections of vectors (functions) in H, and \(\{ \lambda _i \}_{i=1}^\infty \subset {\mathbb {C}}\) are the singular values of T. If \(T_M := \sum _{i=1}^M \lambda _i \langle \cdot , v_i \rangle _H u_i\) then \(T_M \rightarrow T\) as \(M \rightarrow \infty \) in the operator norm.

Suppose that \(\epsilon > 0\). Select M such that \(\Vert T - T_M\Vert < \epsilon \), and select N such that for all \(n > N\),

$$\begin{aligned} \Vert u_i - P_n u_i\Vert _H< \frac{\epsilon }{\sum _{i=1}^M |\lambda _i|^2} \text { and } \Vert v_i - P_n v_i\Vert _H < \frac{\epsilon }{\sqrt{M} \left( \sum _{i=1}^M |\lambda _i|^2\right) ^{1/2}} \end{aligned}$$

for all \(i=1,\ldots ,M\). Let \(g \in H\) be arbitrary.

Now consider,

$$\begin{aligned}&\Vert Tg - P_n T P_n g\Vert _H = \Vert Tg - T_M g + T_M g - P_n T P_n f\Vert _H\\&\quad \le \Vert T - T_M\Vert \Vert g\Vert _H + \Vert T_M g - P_n T P_n g\Vert _H \le \epsilon \Vert g\Vert _H + \Vert T_M g - P_n T P_n g\Vert _H. \end{aligned}$$

The second term after the inequality may be expanded as

$$\begin{aligned}&\Vert T_M g - P_n T P_n g\Vert _H \le \Vert T_M g - P_n T_M g\Vert _H + \Vert P_n T_M g - P_n T P_n g\Vert _H\\&\Vert T_M g - P_n T_M g\Vert _H + \Vert T_M g - T P_n g\Vert _H\\&\quad \le \Vert T_M g - P_n T_M g\Vert _H + \Vert T_M g - T_M P_n g\Vert _H + \Vert T_M P_n g - T P_n g\Vert _H\\&\quad \le \Vert T_M g - P_n T_M g\Vert _H + \Vert T_M g - T_M P_n g\Vert _H + \epsilon \Vert g\Vert _H. \end{aligned}$$

Now the objective is to demonstrate that both \(\Vert T_M g - P_n T_M g\Vert _H\) and \(\Vert T_M g - T_M P_n g\Vert _H\) are proportional to \(\epsilon \Vert g\Vert _H\). Note that

$$\begin{aligned}&\Vert T_M g - P_n T_M g\Vert _H = \left\| \sum _{i=1}^M \lambda _i \langle g, v_i \rangle _H (u_i - P_n u_i)\right\| _H\\&\quad \le \sum _{i=1}^M |\lambda _i| |\langle g, v_i \rangle _H| \Vert u_i - P_n u_i \Vert _H\\&\quad \le \sqrt{\sum _{i=1}^M |\langle g, v_i\rangle _H|^2} \left( \sum _{i=1}^M |\lambda _i|^2 \Vert u_i - P_n u_i \Vert _H^2 \right) ^{1/2} \\&\quad \le \Vert g\Vert _H \left( \sum _{i=1}^M |\lambda _i|^2 \Vert u_i - P_n u_i \Vert _H^2 \right) ^{1/2} \le \epsilon \Vert g\Vert _H, \end{aligned}$$

and

$$\begin{aligned}&\Vert T_M(g - P_n g) \Vert _H = \left\| \sum _{i=1}^M \lambda _i \langle g - P_n g, v_i\rangle _H u_i \right\| \\&\quad \le \left\| \sum _{i=1}^M \lambda _i \left\langle \sum _{j=n+1}^\infty \langle g, g_j \rangle _H g_j, v_i \right\rangle _H u_i\right\| \\&\quad \le \sum _{j=n+1}^\infty |\langle g, g_j\rangle _H| \left( \sum _{i=1}^M |\lambda _i| |\langle g_j, v_i\rangle _H|\right) \\&\quad \le \left( \sum _{j=n+1}^\infty |\langle g, g_i\rangle _H|^2\right) ^{1/2} \left( \sum _{j=n+1}^\infty \left( \sum _{i=1}^M |\lambda _i| |\langle g_i, v_i \rangle _H|\right) ^{2}\right) ^{1/2}\\&\quad \le \Vert g\Vert _H \left( \sum _{j=n+1}^\infty \left( \sum _{i=1}^M |\lambda _i|^2 \right) \left( \sum _{i=1}^M |\langle g_j, v_i\rangle _H|^2\right) \right) ^{1/2}\\&\quad \le \Vert g\Vert _H \left( \sum _{i=1}^M |\lambda _i|^2\right) ^{1/2} \left( \sum _{i=1}^M \sum _{j=n+1}^\infty |\langle g, v_i\rangle _H|^2 \right) ^{1/2}\\&\quad = \Vert g\Vert _H \left( \sum _{i=1}^M |\lambda _i|^2\right) ^{1/2} \left( \sum _{i=1}^M \Vert v_i - P_n v_i\Vert ^2 \right) ^{1/2} \le \epsilon \Vert g\Vert _H. \end{aligned}$$

Thus, for every \(\epsilon > 0\), there is an N such that for all \(n > N\), \(\Vert T g - P_n T P_n g\Vert _H \le 4\epsilon \Vert g\Vert _H.\) Hence, it follows that \(\Vert T - P_n T P_n \Vert \le 4\epsilon \). Thus, as \(n \rightarrow \infty \), \(P_n T P_n \rightarrow T\) in the operator norm. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenfeld, J.A., Kamalapurkar, R., Gruss, L.F. et al. Dynamic Mode Decomposition for Continuous Time Systems with the Liouville Operator. J Nonlinear Sci 32, 5 (2022). https://doi.org/10.1007/s00332-021-09746-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09746-w

Keywords

Mathematics Subject Classification

Navigation