Skip to main content
Log in

Instability of Static Solutions of the sine-Gordon Equation on a \({\mathcal {Y}}\)-Junction Graph with \(\delta \)-Interaction

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The aim of this work is to establish a linear instability result of static, kink and kink/anti-kink soliton profile solutions for the sine-Gordon equation on a metric graph with a structure represented by a \({\mathcal {Y}}\)-junction. The model considers boundary conditions at the graph-vertex of \(\delta \)-interaction type. It is shown that kink and kink/anti-kink soliton type static profiles are linearly (and nonlinearly) unstable. For that purpose, a linear instability criterion that provides the sufficient conditions on the linearized operator around the wave to have a pair of real positive/negative eigenvalues, is established. As a result, the linear stability analysis depends upon the spectral study of this linear operator and of its Morse index. The extension theory of symmetric operators, Sturm–Liouville oscillation results and analytic perturbation theory of operators are fundamental ingredients in the stability analysis. A comprehensive study of the local well-posedness of the sine-Gordon model in \({\mathcal {E}}({\mathcal {Y}}) \times L^2({\mathcal {Y}})\) where \({\mathcal {E}}({\mathcal {Y}}) \subset H^1({\mathcal {Y}})\) is an appropriate energy space, is also established. The theory developed in this investigation has prospects for the study of the instability of static wave solutions of other nonlinear evolution equations on metric graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the sine-Gordon equation. Phys. Rev. Lett. 3, 1262–1264 (1973)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Adami, R., Cacciapuoti, C., Finco, D., Noja, D.: On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A 45(19), 192001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Adami, R., Cacciapuoti, C., Finco, D., Noja, D.: Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Differ. Equ. 257(10), 3738–3777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Adami, R., Cacciapuoti, C., Finco, D., Noja, D.: Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy. J. Differ. Equ. 260(10), 7397–7415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ali Mehmeti, F., Régnier, V.: Splitting of energy and dispersive waves in a star-shaped network. ZAMM Z. Angew. Math. Mech. 83(2), 105–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Ali Mehmeti, F., von Below, J., and Nicaise, S. eds.: Partial Differential Equations on Multistructures, vol. 219 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (2001)

  • Angulo Pava, J., Cavalcante, M.: Linear instability of stationary solutions for the Korteweg-de Vries equation on a star graph (2020) . arXiv preprint arXiv:2006.12571

  • Angulo Pava, J., Goloshchapova, N.: Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Adv. Differ. Equ. 23(11–12), 793–846 (2018a)

  • Angulo Pava, J., Goloshchapova, N.: On the orbital instability of excited states for the NLS equation with the \(\delta \)-interaction on a star graph. Discrete Contin. Dyn. Syst. 38(10), 5039–5066 (2018b)

  • Angulo Pava, J., Lopes, O., Neves, A.: Instability of travelling waves for weakly coupled KdV systems. Nonlinear Anal. 69(5–6), 1870–1887 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Angulo Pava, J., Natali, F.: On the instability of periodic waves for dispersive equations. Differ. Integral Equ. 29(9–10), 837–874 (2016)

    MathSciNet  MATH  Google Scholar 

  • Angulo Pava, J., Plaza, R.G: Stability properties of stationary kink-profile solutions for the sine-Gordon equation on a \({\cal{Y}}\)-junction graph with \(\delta ^{\prime } \)-interaction at the vertex. Preprint, (2021). arXiv:2101.02173

  • Angulo Pava, J., Plaza, R.G.: Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations. Stud. Appl. Math. 137(4), 473–501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Backhaus, S., Chertkov, M.: Getting a grip on the electrical grid. Phys. Today 66(5), 42–48 (2013)

    Article  Google Scholar 

  • Barone, A., Esposito, F., Magee, C.J., Scott, A.C.: Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1(2), 227–267 (1971)

    Article  Google Scholar 

  • Barone, A., Paternó, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982)

    Book  Google Scholar 

  • Berkolaiko, G.: An elementary introduction to quantum graphs. In: A. Girouard, D. Jakobson, M. Levitin, N. Nigam, I. Polterovich, and F. Rochon (eds.). Geometric and computational spectral theory, vol. 700 of Contemp. Math., Amer. Math. Soc., Providence, RI, pp. 41–72 , (2017)

  • Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.): Quantum Graphs and Their Applications. Contemporary Mathematics, vol. 415. American Mathematical Society, Providence, RI (2006)

  • Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  • Bibikov, P.N., Prokhorov, L.V.: Mechanics not on a manifold. J. Phys. A 42(4), 045302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Blank, J., Exner, P., Havlíček, M.: Hilbert Space Operators in Quantum Physics, Theoretical and Mathematical Physics, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  • Bona, J.L., Cascaval, R.C.: Nonlinear dispersive waves on trees. Can. Appl. Math. Q. 16(1), 1–18 (2008)

    MathSciNet  MATH  Google Scholar 

  • Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 1(8), 627–651 (2004)

    Article  MATH  Google Scholar 

  • Burioni, R., Cassi, D., Rasetti, M., Sodano, P., Vezzani, A.: Bose-Einstein condensation on inhomogeneous complex networks. J. Phys. B At. Mol. Opt. Phys. 34(23), 4697–4710 (2001)

    Article  Google Scholar 

  • Cacciapuoti, C., Finco, D., Noja, D.: Ground state and orbital stability for the NLS equation on a general starlike graph with potentials. Nonlinearity 30(8), 3271–3303 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, X.D., Malomed, B.A.: Soliton-defect collisions in the nonlinear Schrödinger equation. Phys. Lett. A 206(3–4), 177–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo, J.-G., Dutykh, D.: Nonlinear waves in networks: model reduction for the sine-Gordon equation. Phys. Rev. E 9, 022912 (2014)

    Article  Google Scholar 

  • Drazin, P.G.: Solitons. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  • Dutykh, D., Caputo, J.-G.: Wave dynamics on networks: method and application to the sine-Gordon equation. Appl. Numer. Math. 131, 54–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Fidaleo, F.: Harmonic analysis on inhomogeneous amenable networks and the Bose-Einstein condensation. J. Stat. Phys. 160(3), 715–759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Frenkel, J., Kontorova, T.: On the theory of plastic deformation and twinning. Acad. Sci. USSR J. Phys. 1, 137–149 (1939)

    MathSciNet  MATH  Google Scholar 

  • Goloshchapova, N.: A nonlinear Klein-Gordon equation on a star graph (2019). arXiv preprint arXiv:1912.00884

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Grunnet-Jepsen, A., Fahrendorf, F., Hattel, S., GrØnbech-Jensen, N., Samuelsen, M.: Fluxons in three long coupled Josephson junctions. Phys. Lett. A 175(2), 116–120 (1993)

    Article  Google Scholar 

  • Henry, D.B., Perez, J.F., Wreszinski, W.F.: Stability theory for solitary-wave solutions of scalar field equations. Comm. Math. Phys. 85(3), 351–361 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Ivancevic, V.G., Ivancevic, T.T.: Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures. J. Geom. Symmetry Phys. 3(1), 1–56 (2013)

    MathSciNet  MATH  Google Scholar 

  • Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1980)

    Google Scholar 

  • Kogan, V.G., Clem, J.R., Kirtley, J.R.: Josephson vortices at tricrystal boundaries. Phys. Rev. B 6(1), 9122–9129 (2000)

    Article  Google Scholar 

  • Krasnosel’skiĭ, M.A.: Positive solutions of operator equations, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, (1964)

  • Kuchment, P.: Quantum graphs. I. Some basic structures. Waves Random Media 14(1), S107–S128 (2004). Special section on quantum graphs

    Article  MathSciNet  MATH  Google Scholar 

  • Kuchment, P.: Quantum graphs II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 32(22), 4887–4900 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes, O.: A linearized instability result for solitary waves. Discrete Contin. Dyn. Syst. 8(1), 115–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Mugnolo, D. (ed.): Mathematical technology of networks. In: Springer Proceedings in Mathematics and Statistics, vol. 128. Springer, Cham (2015)

  • Mugnolo, D., Noja, D., Seifert, C.: Airy-type evolution equations on star graphs. Anal. PDE 11(7), 1625–1652 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Mugnolo, D., Rault, J.-F.: Construction of exact travelling waves for the Benjamin-Bona-Mahony equation on networks. Bull. Belg. Math. Soc. Simon Stevin 21(3), 415–436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Naimark, M.A.: Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators. Frederick Ungar Publishing Co., New York (1967)

    MATH  Google Scholar 

  • Naimark, M.A.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Frederick Ungar Publishing Co., New York (1968)

    MATH  Google Scholar 

  • Nakajima, K., Onodera, Y.: Logic design of Josephson network. II. J. Appl. Phys. 49(5), 2958–2963 (1978)

    Article  Google Scholar 

  • Nakajima, K., Onodera, Y., Ogawa, Y.: Logic design of Josephson network. J. Appl. Phys. 47(4), 1620–1627 (1976)

    Article  Google Scholar 

  • Nichols, W.M., O’Rourke, M., Vlachopoulos, C.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Noja, D.: Nonlinear Schrödinger equation on graphs: recent results and open problems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2007), 20130002 (2014)

    MathSciNet  MATH  Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)

    MATH  Google Scholar 

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press/Harcourt Brace Jovanovich, New York/London (1975)

    MATH  Google Scholar 

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press/Harcourt Brace Jovanovich, New York/London (1978)

    MATH  Google Scholar 

  • Sabirov, K., Rakhmanov, S., Matrasulov, D., Susanto, H.: The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies. Phys. Lett. A 382(16), 1092–1099 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, A.C.: Nonlinear Science, Emergence and Dynamics of Coherent Structures. Oxford Texts in Applied and Engineering Mathematics, 2nd edn. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61(10), 1443–1483 (1973)

    Article  MathSciNet  Google Scholar 

  • Scott, A.C., Chu, F.Y.F., Reible, S.A.: Magnetic-flux propagation on a Josephson transmission line. J. Appl. Phys. 47(7), 3272–3286 (1976)

    Article  Google Scholar 

  • Shatah, J., Strauss, W.:Spectral condition for instability. In: J. Bona, K. Saxton, and R. Saxton (eds.) Nonlinear PDE’s, Dynamics and Continuum Physics (South Hadley, MA, 1998), vol. 255 of Contemp. Math., Amer. Math. Soc., Providence, RI, pp. 189–198 (2000)

  • Susanto, H., Karjanto, N., Nusantara, T., Widjanarko, T.: Soliton and breather splitting on star graphs from tricrystal Josephson junctions. Symmetry 11(2), 271–280 (2019)

    Article  MATH  Google Scholar 

  • Susanto, H., van Gils, S.: Existence and stability analysis of solitary waves in a tricrystal junction. Phys. Lett. A 338(3), 239–246 (2005)

    Article  MATH  Google Scholar 

  • Tahtadžjan, L.A., Faddeev, L.D.: The Hamiltonian system connected with the equation \(u_{\xi }{}_{\eta }+{\rm sin} u=0\). Trudy Mat. Inst. Steklov 142, 254–266 (1976)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for their insightful comments and suggestions which improved the quality of the paper. The authors also thank J.-G. Caputo for physical interpretations on the boundary condition (1.4). J. Angulo was supported in part by CNPq/Brazil Grant and FAPERJ/Brazil program PRONEX-E - 26/010.001258/2016. The work of R. G. Plaza was partially supported by DGAPA-UNAM, program PAPIIT, grant IN-100318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón G. Plaza.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For convenience of the reader, and because of the use of non-standard techniques along the manuscript, in this section we formulate the extension theory of symmetric operators suitable for our needs (see (Naimark 1967, 1968) for further information). The following result is classical and can be found in Reed and Simon (1975), p. 138.

Theorem A. 1

(von-Neumann decomposition) Let A be a closed, symmetric operator, then

$$\begin{aligned} D(A^*)=D(A)\oplus {\mathcal {N}}_{-i} \oplus {\mathcal {N}}_{+i}. \end{aligned}$$
(A. 1)

with \({\mathcal {N}}_{\pm i}= \ker (A^*\mp iI)\). Therefore, for \(u\in D(A^*)\) and \(u=x+y+z\in D(A)\oplus {\mathcal {N}}_{-i} \oplus {\mathcal {N}}_{+i}\),

$$\begin{aligned} A^*u=Ax+(-i)y+iz. \end{aligned}$$
(A. 2)

Remark A. 2

The direct sum in (A. 1) is not necessarily orthogonal.

The following propositions provide a strategy for estimating the Morse-index of the self-adjoint extensions see Reed and Simon, vol. 2, chapter X Reed and Simon (1975).

Proposition A. 3

Let A be a densely defined lower semi-bounded symmetric operator (that is, \(A\ge mI\)) with finite deficiency indices, \(n_{\pm }(A)=k<\infty \), in the Hilbert space \({\mathcal {H}}\), and let \({\widehat{A}}\) be a self-adjoint extension of A. Then, the spectrum of \({\widehat{A}}\) in \((-\infty , m)\) is discrete and consists of, at most, k eigenvalues counting multiplicities.

Proposition A. 4

Let A be a densely defined, closed, symmetric operator in some Hilbert space H with deficiency indices equal \(n_{\pm }(A)=1\). All self-adjoint extensions \(A_\theta \) of A may be parametrized by a real parameter \(\theta \in [0,2\pi )\) where

$$\begin{aligned} \begin{aligned} D(A_\theta )&=\{x+c\phi _+ + \zeta e^{i\theta }\phi _{-}: x\in D(A), \zeta \in {\mathbb {C}}\},\\ A_\theta (x + \zeta \phi _+ + \zeta e^{i\theta }\phi _{-})&= Ax+i \zeta \phi _+ - i \zeta e^{i\theta }\phi _{-}, \end{aligned} \end{aligned}$$

with \(A^*\phi _{\pm }=\pm i \phi _{\pm }\), and \(\Vert \phi _+\Vert =\Vert \phi _-\Vert \).

Next proposition can be found in Naimark (1968) (see Theorem 9, p. 38).

Proposition A. 5

All self-adjoint extensions of a closed, symmetric operator which has equal and finite deficiency indices have one and the same continuous spectrum.

The following proposition is the main result of this appendix and characterizes all self-adjoint extensions of the symmetric operator under consideration. It plays a key role in the proof of Proposition  4.4.

Proposition A. 6

Consider the closed symmetric operator densely defined on \(L^2({\mathcal {Y}})\), \(( {\mathcal {M}}, D( {\mathcal {M}}))\), by

$$\begin{aligned} {\mathcal {M}}= & {} \Big (\Big (-c_j^2\frac{d^2}{dx^2}\Big )\delta _{j,k} \Big ),\;1\leqq j, k\leqq 3,\nonumber \\ D({\mathcal {M}})= & {} \Big \{(v_j)_{j=1}^3\in H^2({\mathcal {Y}}): v_1(0-)=v_2(0+)=v_3(0+)=0,\;\;\nonumber \\&\sum \limits _{j=2}^3 c_j^2v_j'(0+)-c_1^2v_1'(0-)=0 \Big \}, \end{aligned}$$
(A.3)

with \(\delta _{j,k}\) being the Kronecker symbol. Then, the deficiency indices are \(n_{\pm }( {\mathcal {M}})=1\). Therefore, we have that all the self-adjoint extensions of \(( {\mathcal {M}}, D( {\mathcal {M}}))\), namely \(({\mathcal {J}}_Z, D({\mathcal {J}}_Z))\), \(Z\in {\mathbb {R}}\), are defined by \({\mathcal {J}}_Z\equiv {\mathcal {M}}\) and \(D({\mathcal {J}}_Z)\) by (1.11).

Proof

We show initially that the adjoint operator \(( {\mathcal {M}}^*, D( {\mathcal {M}}^*))\) of \(( {\mathcal {M}}, D( {\mathcal {M}}))\) is given by

$$\begin{aligned} {\mathcal {M}}^*={\mathcal {M}}, \quad D( {\mathcal {M}}^*)=\{u\in H^2({\mathcal {Y}}) : u_1(0-)=u_2(0+)=u_3(0+)\}. \end{aligned}$$
(A.4)

Indeed, formally for \({\varvec{u}}=(u_1, u_2, u_3), {\varvec{v}}=(v_1, v_2, v_3)\in H^2({\mathcal {Y}})\) we have

$$\begin{aligned} \langle {\mathcal {M}}{\varvec{v}}, {\varvec{u}}\rangle&=- c_1^2v_1' (0-)u_1(0-)+ c_1^2v_1 (0-)u'_1(0-) \nonumber \\&\quad + \sum _{j=2}^ 3c_j^2v'_{j}(0+)u_j(0+) - \sum _{j=2}^ 3c_j^ 2v_{j}(0+)u'_j(0+)\nonumber \\&\quad +\langle {\varvec{v}},{\mathcal {M}} {\varvec{u}}\rangle . \end{aligned}$$
(A.5)

From (A.5), we obtain immediately for \({\varvec{u}}=(u_1, u_2, u_3), {\varvec{v}}=(v_1, v_2, v_3)\in D({\mathcal {M}})\) the symmetric property of \({\mathcal {M}}\). Next, we denote by \(D^*=\{u\in H^2({\mathcal {Y}}) : u_1(0-)=u_2(0+)=u_3(0+)\}\) and we will show \(D^*=D( {\mathcal {M}}^*)\). Indeed, from (A.5) we obtain for \({\varvec{u}}\in D^*\) and \({\varvec{v}}\in D( {\mathcal {M}})\) that \(\langle {\mathcal {M}}{\varvec{v}}, {\varvec{u}}\rangle = \langle {\varvec{v}}, {\mathcal {M}}{\varvec{u}}\rangle \) and so \({\varvec{u}}\in D ({\mathcal {M}}^*)\) with \({\mathcal {M}}^*{\varvec{u}}= {\mathcal {M}}{\varvec{u}}\). Let us show the inverse inclusion \(D^*\supseteq D({\mathcal {M}}^*)\). Take \(\varvec{u}=(u_1, u_2, u_3)\in D({\mathcal {M}}^*)\), then for any \(\varvec{v}=(v_1, v_2, v_3)\in D({\mathcal {M}})\) we have from (A.5)

$$\begin{aligned} \langle {\mathcal {M}} {\varvec{v}}, {\varvec{u}}\rangle&=- c_1^2v_1' (0-)u_1(0-)+ \sum _{j=2}^ 3c_j^2v'_{j}(0+)u_j(0+) +\langle \varvec{v},{\mathcal {M}} {\varvec{u}}\rangle \nonumber \\&=\langle {\varvec{v}},{\mathcal {M}}^* \varvec{u}\rangle =\langle {\varvec{v}},{\mathcal {M}} {\varvec{u}}\rangle . \end{aligned}$$
(A.6)

Thus, we arrive for any \({\varvec{v}}\in D({\mathcal {M}})\) at the equality

$$\begin{aligned} \sum _{j=2}^ 3c_j^2v'_{j}(0+)u_j(0+) - c_1^2v_1' (0-)u_1(0-)=0 \end{aligned}$$
(A.7)

Next, it consider \({\varvec{v}}=(v_1, 0, v_3)\in D({\mathcal {M}})\) then \(c_1^2 v_1'(0-)=c_3^2 v_3'(0+)\). Then, from (A.7) we obtain

$$\begin{aligned}{}[u_3(0+)-u_1(0-)]c_1^ 2 v_1'(0-)=0. \end{aligned}$$

So, by choosing \(v_1'(0-)\ne 0\) we obtain \(u_1(0-)=u_3(0+)\). Then, (A.7) is reduced to \( [u_2(0+)-u_1(0-)]c_2^ 2v_2'(0+)=0\). Therefore, by choosing \({\varvec{v}}=(v_1, v_2, v_3)\in D({\mathcal {M}})\) with \(v_2'(0+)\ne 0\) we conclude that \({\varvec{u}}\in D^*\). This shows relations in (A.4).

From (A.4) we obtain that the deficiency indices for \(( {\mathcal {M}}, D( {\mathcal {M}}))\) are \(n_{\pm }( {\mathcal {M}})=1\). Indeed, \( \ker ({\mathcal {M}}^*\pm iI)=[\Psi _{\pm }]\) with \(\Psi _{\pm }\) defined by

$$\begin{aligned} \Psi _{\pm }= \Big (\underset{x<0}{e^{\frac{ ik_{\mp }}{ c_1 }x}}, \underset{x>0}{e^{\frac{- ik_{\mp }}{ c_2 }x}}, \underset{x>0}{e^{\frac{ -ik_{\mp }}{ c_3 }x}}\Big ), \end{aligned}$$
(A.8)

\(k^2_{\mp }=\mp i\), \(\mathrm {Im}\,(k_{-})<0\) and \(\mathrm {Im}\,(k_{+})<0\). Moreover, \(\Vert \Psi _{-}\Vert _{L^ 2({\mathcal {Y}})}=\Vert \Psi _{+}\Vert _{L^ 2({\mathcal {Y}})}\).

Next, let us show that the domain of any self-adjoint extension \(\widehat{{\mathcal {M}}}\) of the operator \(({\mathcal {M}}, D({\mathcal {M}}))\) in (A.3) (and acting on complex-valued functions) is given by \(D(\widehat{{\mathcal {M}}})=D({{\mathcal {J}}_Z})\) in (1.10). Indeed, we recall from extension theory for symmetric operator that \(D(\widehat{{\mathcal {M}}})\) is a restriction of \(D({{\mathcal {M}}}^*)\) (von-Neumann decomposition above), so \( D(\widehat{{\mathcal {M}}})\subset D({{\mathcal {M}}}^*)\) (continuity at the vertex \(\nu =0\)). Next, due to Proposition A. 4 follows

$$\begin{aligned} D(\widehat{{\mathcal {M}}})=\left\{ \varvec{u}\in H^2({\mathcal {Y}}), \, {\varvec{u}}= u_0+ \zeta \Psi _{-} + \zeta e^{i\theta }\Psi _{+}:\, u_0\in D({\mathcal {M}}), \zeta \in {\mathbb {C}},\theta \in [0,2\pi )\right\} , \end{aligned}$$

Thus, it is easily seen that for \({\varvec{u}}=(u_1,u_2, u_3)\in D(\widehat{{\mathcal {M}}})\), we have

$$\begin{aligned} \sum \limits _{j=2}^3 c_j^2u_j'(0+)-c_1^2u_1'(0-)= - \zeta \sum \limits _{j=1}^3 c_j \Big (e^ {i\frac{\pi }{4}}+e^ {i(\theta -\frac{\pi }{4})}\Big ) ,\;\; u_{1}(0-)= \zeta (1+e^{i\theta }). \end{aligned}$$
(A.9)

From the last equalities, it follows that

$$\begin{aligned} \sum \limits _{j=2}^3 c_j^2u_j'(0+)-c_1^2u_1'(0-)&=Zu_{1}(0-) ,\,\, \text {where}\,\, Z=Z(\theta )\nonumber \\&= -\sum \limits _{j=1}^3 c_j \frac{e^{i\frac{\pi }{4}}+e^{i(\theta -\frac{\pi }{4})}}{1+e^{i\theta }}\in {\mathbb {R}}, \end{aligned}$$
(A.10)

with \(\theta \in [0, 2\pi )-\{\pi \}\). Thus, the set of self-adjoint extensions \((\widehat{{\mathcal {M}}}, D(\widehat{{\mathcal {M}}}))\) of the symmetric operator \(({\mathcal {M}}, D({\mathcal {M}}))\) can be seen as one-parametrized family \(({\mathcal {J}}_Z, D({\mathcal {J}}_Z))\) defined by (1.11). This finishes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo Pava, J., Plaza, R.G. Instability of Static Solutions of the sine-Gordon Equation on a \({\mathcal {Y}}\)-Junction Graph with \(\delta \)-Interaction. J Nonlinear Sci 31, 50 (2021). https://doi.org/10.1007/s00332-021-09711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09711-7

Keywords

Mathematics Subject Classification

Navigation