Skip to main content
Log in

Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo Model

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Specific kinds of physical and biological systems exhibit complex Mixed-Mode Oscillations mediated by folded-singularity canards in the context of slow-fast models. The present manuscript revisits these systems, specifically by analysing the dynamics near a folded singularity from the viewpoint of inflection sets of the flow. Originally, the inflection set method was developed for planar systems [Brøns and Bar-Eli in Proc R Soc A 445(1924):305–322, 1994; Okuda in Prog Theor Phys 68(6):1827–1840, 1982; Peng et al. in Philos Trans R Soc A 337(1646):275–289, 1991] and then extended to N-dimensional systems [Ginoux et al. in Int J Bifurc Chaos 18(11):3409–3430, 2008], although not tailored to specific dynamics (e.g. folded singularities). In our previous study, we identified components of the inflection sets that classify several canard-type behaviours in 2D systems [Desroches et al. in J Math Biol 67(4):989–1017, 2013]. Herein, we first survey the planar approach and show how to adapt it for 3D systems with an isolated folded singularity by considering a suitable reduction of such 3D systems to planar non-autonomous slow-fast systems. This leads us to the computation of parametrized families of inflection sets of one component of that planar (non-autonomous) system, in the vicinity of a folded node or of a folded saddle. We then show that a novel component of the inflection set emerges, which approximates and follows the axis of rotation of canards associated to folded-node and folded-saddle singularities. Finally, we show that a similar inflection-set component occurs in the vicinity of a delayed Hopf bifurcation, a scenario that can arise at the transition between folded node and folded saddle. These results are obtained in the context of a canonical model for folded-singularity canards and subsequently we show it is also applicable to complex slow-fast models. Specifically, we focus the application towards the self-coupled 3D FitzHugh–Nagumo model, but the method is generically applicable to higher-dimensional models with isolated folded singularities, for instance in conductance-based models and other physical-chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amir, R., Michaelis, M., Devor, M.: Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J. Neurosci. 22(3), 1187–1198 (2002)

    Google Scholar 

  • Arnol’d, V.I.: Contact geometry: the geometrical method of Gibbs’s thermodynamics. In: Caldi, D.G., Mostow, G.D. (eds.) Proceedings of the Gibbs Symposium, Yale University, New Haven, CT, 15–17 May 1989. Amer. Math. Soc. and Amer. Inst. Physics, pp. 163–179 (1990)

  • Arnol’d, V.I., Afrajmovich, V.S., Il’yashenko, Y.S., Shil’nikov, L.P.: Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. Encyclopaedia of Mathematical Sciences, vol. 5. Springer, Berlin (1994)

    Google Scholar 

  • Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49(1), 55–71 (1989)

    MathSciNet  MATH  Google Scholar 

  • Barkley, D.: Slow manifolds and mixed-mode oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 89(9), 5547–5559 (1988)

    MathSciNet  Google Scholar 

  • Benoît, É.: Canards et enlacements. Publ. Math. IHÉS 72(1), 63–91 (1990)

    MathSciNet  MATH  Google Scholar 

  • Benoît, É., Brøns, M., Desroches, M., Krupa, M.: Extending the zero-derivative principle for slow-fast dynamical systems. Z. Angew. Math. Phys. 66(5), 2255–2270 (2015)

    MathSciNet  MATH  Google Scholar 

  • Benoît, É., Callot, J.-L., Diener, F., Diener, M.: Chasse au canard. Coll. Math. 32(1–2), 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  • Benoît, É., Lobry, C.: Les canards de \(\mathbb{R}^ 3\). CR Acad. Sci. Paris 294, 483–488 (1982)

    MATH  Google Scholar 

  • Berglund, N.: Adiabatic dynamical systems and hysteresis. Ph.D. thesis, EPFL (Lausanne, Switzerland). https://infoscience.epfl.ch/record/32277 (1998)

  • Brøns, M., Bar-Eli, K.: Asymptotic analysis of canards in the EOE equations and the role of the inflection line. Proc. R. Soc. A 445(1924), 305–322 (1994)

    MATH  Google Scholar 

  • Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Guillamon, A., Ponce, E., Prohens, R., Rodrigues, S., Teruel, A.E.: Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev. 58(4), 653–691 (2016)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Jeffrey, M.R.: Canards and curvature: the ‘smallness of \(\varepsilon \)’ in slow-fast dynamics. Proc. R. Soc. A 467(2132), 2404–2421 (2011)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Krauskopf, B., Osinga, H.M.: Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos 18(1), 015107 (2008)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Krupa, M., Rodrigues, S.: Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67(4), 989–1017 (2013)

    MathSciNet  MATH  Google Scholar 

  • Desroches, M., Krupa, M., Rodrigues, S.: Spike-adding in parabolic bursters: the role of folded-saddle canards. Phys. D 331, 58–70 (2016)

    MathSciNet  MATH  Google Scholar 

  • Dumortier, F., Roussarie, R.: Canard Cycles and Center Manifolds. Memoirs of the American Mathematical Society, vol. 577. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  • Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. In: Verhulst, F. (ed.) Asymptotic Analysis II, Lecture Notes in Mathematics, vol. 985, pp. 449–497, Springer, Berlin (1983)

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    MathSciNet  MATH  Google Scholar 

  • Ginoux, J.-M., Rossetto, B., Chua, L.O.: Slow invariant manifolds as curvature of the flow of dynamical systems. Int. J. Bifurc. Chaos 18(11), 3409–3430 (2008)

    MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Applied Mathematical Sciences, vol. 51. Springer, Berlin (1985)

    MATH  Google Scholar 

  • Golubitsky, M., Josić, K., Kaper, T.J.: An unfolding theory approach to bursting in fast-slow systems. In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, pp. 277–308. IoP Publishing Ltd, Bristol (2001)

    MATH  Google Scholar 

  • Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58(21), 4751–4768 (2003)

    Google Scholar 

  • Hayes, M.G., Kaper, T.J., Szmolyan, P., Wechselberger, M.: Geometric desingularization of degenerate singularities in the presence of fast rotation: a new proof of known results for slow passage through Hopf bifurcations. Indag. Math. 27(5), 1184–1203 (2016)

    MathSciNet  MATH  Google Scholar 

  • Heiter, P., Lebiedz, D.: Towards differential geometric characterization of slow invariant manifolds in extended phase space: Sectional curvature and flow invariance. SIAM J. Appl. Dyn. Syst. 17(1), 732–753 (2018)

    MathSciNet  MATH  Google Scholar 

  • Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical systems, C.I.M.E. Lectures, Montecatini Terme, Italy, Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995)

  • Koos, T., Tepper, J.M., Wilson, C.J.: Comparison of IPSCs evoked by spiny and fast-spiking neurons in the829 neostriatum. J. Neurosci. 24(36), 7916–7922 (2004)

    Google Scholar 

  • Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    MathSciNet  MATH  Google Scholar 

  • Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248(12), 2841–2888 (2010)

    MathSciNet  MATH  Google Scholar 

  • Marino, F., Ciszak, M., Abdalah, S.F., Al-Naimee, K., Meucci, R., Arecchi, F.T.: Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback. Phys. Rev. E 84(4), 047201 (2011)

    Google Scholar 

  • Marszalek, W.: Fold points and singularity induced bifurcation in inviscid transonic flow. Phys. Lett. A 376(28–29), 2032–2037 (2012)

    MATH  Google Scholar 

  • Masełko, J., Swinney, H.L.: Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 85(11), 6430–6441 (1986)

    MathSciNet  Google Scholar 

  • Mitry, J., Wechselberger, M.: Folded saddles and faux canards. SIAM J. Appl. Dyn. Syst. 16(1), 546–596 (2017)

    MathSciNet  MATH  Google Scholar 

  • Neishtadt, A.I.: Asymptotic investigation of the loss of stability as a pair of eigenvalues slowly cross the imaginary axis. Uspekhi Mat. Nauk. 40, 190–191 (1985)

    Google Scholar 

  • Nevado-Holgado, A.J., Marten, F., Richardson, M.P., Terry, J.R.: Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. NeuroImage 59(3), 2374 (2012)

    Google Scholar 

  • Okuda, M.: Inflector analysis of the second stage of the transient phase for an enzymatic one-substrate reaction. Prog. Theor. Phys. 68(6), 1827–1840 (1982)

    Google Scholar 

  • Peng, B., Gáspár, V., Showalter, K.: False bifurcations in chemical systems: canards. Philos. Trans. R. Soc. A 337(1646), 275–289 (1991)

    MATH  Google Scholar 

  • Rajesh, S., Ananthakrishna, G.: Relaxation oscillations and negative strain rate sensitivity in the Portevin–Le Chatelier effect. Phys. Rev. E 61(4), 3664 (2000)

    Google Scholar 

  • Rubin, J., Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple timescales. Chaos 18(1), 015105 (2008)

    MathSciNet  MATH  Google Scholar 

  • Rodrigues, S., Barton, D., Szalai, R., Benjamin, O., Richardson, M.P., Terry, J.R.: Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J. Comput. Neurosci. 27(3), 507–526 (2009)

    MathSciNet  Google Scholar 

  • Rodrigues, S., Barton, D., Marten, F., Kibuuka, M., Alarcon, G., Richardson, M.P., Terry, J.R.: A method for detecting false bifurcations in dynamical systems: application to neural-field models. Biol. Cybern. 102(2), 145–154 (2010)

    MathSciNet  MATH  Google Scholar 

  • Marten, F., Rodrigues, S., Benjamin, O., Richardson, M.P., Terry, J.R.: Onset of poly-spike complexes in a mean-field model of human EEG and its application to absence epilepsy. Philos. Trans. R. Soc. A 367(1891), 1145–1161 (2009)

    MathSciNet  MATH  Google Scholar 

  • Plant, R.E.: Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol. 11(1), 15–32 (1981)

    MathSciNet  MATH  Google Scholar 

  • Shishkova, M.A.: A discussion of a certain system of differential equations with a small parameter multiplying the highest derivatives. Dokl. Akad. Nauk SSSR 209, 576–579 (1973)

    MathSciNet  Google Scholar 

  • Szmolyan, P., Wechselberger, M.: Canards in \(\mathbb{R}^3\). J. Differ. Equ. 177(2), 419–453 (2001)

    MATH  Google Scholar 

  • Staff, N.P., Jung, H.Y., Thiagarajan, T., Yao, M., Spruston, N.: Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J. Neurophysiol. 84(5), 2398–2408 (2000)

    Google Scholar 

  • Wechselberger, M.: Existence and bifurcation of canards in \(\mathbb{R}^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4(1), 101–139 (2005)

    MathSciNet  MATH  Google Scholar 

  • Wechselberger, M.: A propos de canards (apropos canards). Trans. Am. Math. Soc. 364(6), 3289–3309 (2012)

    MathSciNet  MATH  Google Scholar 

  • Zeeman, E.C.: Levels of structure in catastrophe theory illustrated by applications in the social and biological sciences. In: Proceedings of the International Congress of Mathematicians, Vancouver, Canada, vol. 2, pp. 533–548 (1974)

Download references

Acknowledgements

SR would like to acknowledge Ikerbasque (The Basque Foundation for Science). Moreover, SR and JUA would like to thank for the fact that this research is supported by the Basque Government through the BERC 2018-2021 program and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project RTI2018-093860-B-C21 funded by (AEI/FEDER, UE) and acronym “MathNEURO”. MD acknowledges BCAM’s hospitality during a visiting fellowship in the summer 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Desroches or S. Rodrigues.

Additional information

Communicated by Ferdinand Verhulst.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Singularity Theory Approach

Appendix: Singularity Theory Approach

We build upon our previous studies that established that inflection sets and their topological shape changes (parameterised by a distinguished parameter expressed in the context of bifurcation singularity theory by Golubitsky and Schaeffer) can characterise and classify specific classes of canard mediated transitions. We extend our studies and show that a wider class of canards, namely canards mediated by folded-singularities can also be studied by the same framework. To unveil more information about the relationship between inflection sets and the dynamics near a folded singularity (saddle or node), it is useful to evaluate the inflection equation close to the folded singularity and along time instants t. To this end, we conveniently write Eq. (18) by completing the square yielding

$$\begin{aligned} \bar{h}^2-\frac{1}{4}\left[ \varepsilon \mu -2x(\mu t+z_0+x)\right] ^2+\varepsilon (\mu t+z_0+x)^2 = 0, \end{aligned}$$
(36)

with

$$\begin{aligned} \bar{h}=h+\frac{1}{2}\left( \varepsilon \mu -2x(\mu t+z_0+x)\right) , \end{aligned}$$
(37)

which is equivalently rewritten as follows

$$\begin{aligned} \bar{h}^2-\left( \sqrt{\frac{\varepsilon \mu }{2}}\right) ^4 +(\mu t+z_0+x)^2(\varepsilon -x^2)+ \left( \sqrt{\frac{\varepsilon \mu }{2}}\right) ^2 2x(\mu t+z_0+x) = 0. \end{aligned}$$
(38)

Following from our previous studies, we recast Eq. (38) as a bifurcation problem with a distinguished parameter, which leads to the case \(8^-\) (of the singularity theory) on page 208 of Golubitsky and Schaeffer (1985) as follows

$$\begin{aligned} X^2-\lambda ^4+\alpha +\beta \lambda +\gamma \lambda ^2, \end{aligned}$$
(39)
Fig. 9
figure 9

A replica of the bifurcation surface of a bifurcation problem case from Golubitsky and Schaeffer (1985) (case 8\(^-\), page 208) showing the possibility for a bubble to emerge [panel (b)]; compare with Figs. 3c and 4c. The associated bifurcation equation with distinguished parameters is: \(x^2-\lambda ^4+\alpha +\beta \lambda +\gamma \lambda ^2=0\) where \(\lambda \) is the distinguished parameter and \((\alpha ,\beta ,\gamma )\) are three unfolding parameters. Taking different values for the triple of unfolding parameters give the three dots labelled (a), (b) and (c) on the left panel, which give topologically different transversal intersections separated by bifurcations (Color figure online)

with

$$\begin{aligned} X&= \bar{h},\nonumber \\ \lambda&= \sqrt{\frac{\varepsilon \mu }{2}},\nonumber \\ \alpha&= (\mu t+z_0+x)^2(\varepsilon -x^2),\nonumber \\ \beta&= 0,\nonumber \\ \gamma&= 2x(\mu t+z_0+x). \end{aligned}$$
(40)

The topological shape of the solution to Eq. (39) is shown on Fig. 9. The figure also shows the topological changes as a bifurcation parameter is varied. In particular, it shows that when \(\mu >0\) (i.e. in the folded node case) an additional closed component of the inflection curve emerges, which corresponds to the inflection bubble that we have studied in the present work and it is in contrast to the planar case where only a single point of this bubble exists, namely the equilibrium point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albizuri, J.U., Desroches, M., Krupa, M. et al. Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo Model. J Nonlinear Sci 30, 3265–3291 (2020). https://doi.org/10.1007/s00332-020-09650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09650-9

Keywords

Navigation