Skip to main content
Log in

The Exchange-Driven Growth Model: Basic Properties and Longtime Behavior

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The exchange-driven growth model describes a process in which pairs of clusters interact through the exchange of single monomers. The rate of exchange is given by an interaction kernel K which depends on the size of the two interacting clusters. Well-posedness of the model is established for kernels growing at most linearly and arbitrary initial data. The longtime behavior is established under a detailed balance condition on the kernel. The total mass density \(\varrho \), determined by the initial data, acts as an order parameter, in which the system shows a phase transition. There is a critical value \(\varrho _c\in (0,\infty ]\) characterized by the rate kernel. For \(\varrho \le \varrho _c\), there exists a unique equilibrium state \(\omega ^\varrho \) and the solution converges strongly to \(\omega ^\varrho \). If \(\varrho > \varrho _c\), the solution converges only weakly to \(\omega ^{\varrho _c}\). In particular, the excess \(\varrho - \varrho _c\) gets lost due to the formation of larger and larger clusters. In this regard, the model behaves similarly to the Becker–Döring equation. The main ingredient for the longtime behavior is the free energy acting as Lyapunov function for the evolution. It is also the driving functional for a gradient flow structure of the system under the detailed balance condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker–Döring equations for arbitrary initial data. Proc. R. Soc. Edinb. Sect. A Math. 108(1–2), 109–116 (1988)

    Article  Google Scholar 

  • Ball, J.M., Carr, J., Penrose, O.: The Becker–Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)

    Article  Google Scholar 

  • Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. der Physik 24, 719–752 (1935)

    Article  Google Scholar 

  • Beltrán, J., Jara, M., Landim, C.: A martingale problem for an absorbed diffusion: the nucleation phase of condensing zero range processes. Probab. Theory Relat. Fields 169(3–4), 1169–1220 (2017)

    Article  MathSciNet  Google Scholar 

  • Ben-Naim, E., Krapivsky, P.L.: Exchange-driven growth. Phys. Rev. E 68(3), 031104 (2003)

    Article  Google Scholar 

  • Cañizo, J.: The lemma of de la Valleé-Poussin. Unpublished note (2006)

  • Cañizo, J.: Asymptotic behaviour of solutions to the generalized Becker–Döring equations for general initial data. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2064), 3731–3745 (2005)

    Article  MathSciNet  Google Scholar 

  • Cañizo, J., Einav, A., Lods, B.: Trend to equilibrium for the Becker–Döring equations: an analogue of Cercignani’s conjecture. Anal. PDE 10(7), 1663–1708 (2017)

    Article  MathSciNet  Google Scholar 

  • Cao, J., Chleboun, P., Grosskinsky, S.: Dynamics of condensation in the totally asymmetric inclusion process. J. Stat. Phys. 155(3), 523–543 (2014)

    Article  MathSciNet  Google Scholar 

  • Chau, Y.-X., Connaughton, C., Grosskinsky, S.: Explosive condensation in symmetric mass transport models. J. Stat. Mech. Theory Exp. 2015(11), P11031 (2015)

    Article  Google Scholar 

  • Cocozza-Thivent, C.: Processus des misanthropes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70(4), 509–523 (1985)

    Article  MathSciNet  Google Scholar 

  • Conlon, J.G., Schlichting, A.: A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discret. Contin. Dyn. Syst. A 39(4), 1821–1889 (2019)

    Article  Google Scholar 

  • Dellacherie, C., Meyer, P.: Probabilities and Potential. Number Part 1 in North-Holland Mathematics Studies. Elsevier Science & Technology Books (1978)

  • Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Comparative Pathobiology—Studies in the Postmodern Theory of Education. Oxford University Press, Oxford (1988)

    Google Scholar 

  • Erbar, M., Fathi, M., Laschos, V., Schlichting, A.: Gradient flow structure for McKean–Vlasov equations on discrete spaces. Discret. Contin. Dyn. Syst. 36(12), 6799–6833 (2016)

    Article  MathSciNet  Google Scholar 

  • Esenturk, E., Velazquez, J.: Large time behavior of exchange-driven growth. arXiv: 1904.11804 (2019)

  • Esenturk, E.: Mathematical theory of exchange-driven growth. Nonlinearity 31(7), 3460–3483 (2018)

    Article  MathSciNet  Google Scholar 

  • Godrèche, C.: Dynamics of condensation in zero-range processes. J. Phys. A Math. Gen. 36(23), 6313–6328 (2003)

    Article  MathSciNet  Google Scholar 

  • Godrèche, C., Drouffe, J.-M.: Coarsening dynamics of zero-range processes. J. Phys. A Math. Theor. 50(1), 015005 (2017)

    Article  MathSciNet  Google Scholar 

  • Grosskinsky, S., Jatuviriyapornchai, W.: Derivation of mean-field equations for stochastic particle systems. Stoch. Process. Their Appl. 129, 1455–1475 (2019)

    Article  MathSciNet  Google Scholar 

  • Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389 (2003)

    Article  MathSciNet  Google Scholar 

  • Herrmann, M., Naldzhieva, M., Niethammer, B.: On a thermodynamically consistent modification of the Becker–Döring equations. Phys. D Nonlinear Phenom. 222(1–2), 116–130 (2006)

    Article  Google Scholar 

  • Hidy, G.M., Brock, J.R.: Topics in Current Aerosol Research. In: Top. Curr. Aerosol Res., vol. 3 (1972)

  • Ispolatov, S., Krapivsky, P., Redner, S.: Wealth distributions in asset exchange models. Eur. Phys. J. B 2(2), 267–276 (1998)

    Article  Google Scholar 

  • Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Laurençot, P., Mischler, S.: From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations. J. Stat. Phys. 106(5/6), 957–991 (2002)

    Article  Google Scholar 

  • Leyvraz, F., Redner, S.: Scaling theory for migration-driven aggregate growth. Phys. Rev. Lett. 88(6), 068301 (2002)

    Article  Google Scholar 

  • Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1), 35–50 (1961)

    Article  Google Scholar 

  • Lin, Z., Ke, J.: Kinetics of a migration-driven aggregation process with birth and death. Phys. Rev. E 67(3), 031103 (2003)

    Article  Google Scholar 

  • Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    Article  MathSciNet  Google Scholar 

  • Mielke, A.: A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329 (2011)

    Article  MathSciNet  Google Scholar 

  • Niethammer, B.: On the evolution of large clusters in the Becker–Döring model. J. Nonlinear Sci. 13(1), 115–155 (2003)

    Article  MathSciNet  Google Scholar 

  • Penrose, O.: The Becker–Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 89, 305–320 (1997)

    Article  Google Scholar 

  • Rafferty, T., Chleboun, P., Grosskinsky, S.: Monotonicity and condensation in homogeneous stochastic particle systems. Ann. l’Institut Henri Poincaré Probab. Stat. 54(2), 790–818 (2018)

    Article  MathSciNet  Google Scholar 

  • Schlichting, A.: Macroscopic limit of the Becker–Döring equation via gradient flows. ESAIM Control Optim. Calc. Var. 25, 22 (2018)

    Article  Google Scholar 

  • Slemrod, M.: Trend to equilibrium in the Becker–Doring cluster equations. Nonlinearity 2(1), 429–443 (1989)

    Article  MathSciNet  Google Scholar 

  • Velázquez, J.J.: The Becker–Döring equations and the Lifshitz–SIyozov theory of coarsening. J. Stat. Phys. 92(1–2), 195–236 (1998)

    Article  Google Scholar 

  • Waclaw, B., Evans, M.R.: Explosive condensation in a mass transport model. Phys. Rev. Lett. 108(7), 070601 (2012)

    Article  Google Scholar 

  • Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65(7–8), 581–591 (1961)

    Google Scholar 

Download references

Acknowledgements

The author enjoyed fruitful discussions with Stefan Grosskinsky on the derivation of the system as mean-field limit as well as with Stefan Luckhaus, Barbara Niethammer, and Juan Velázquez on the Becker–Döring system and related topics. The author thanks Emre Esenturk for bringing many references to his attention. Moreover, the author is incredibly grateful for the very constructive and detailed referee reports pointing out missing steps and misprints in an earlier version. The author acknowledges support by the Department of Mathematics I at RWTH Aachen University, where part of this work originates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schlichting.

Additional information

Communicated by Dr. Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Lemma of de la Vallée-Poussin in \(\mathscr {P}^\varrho \)

Appendix A. Lemma of de la Vallée-Poussin in \(\mathscr {P}^\varrho \)

Lemma A.1

For \(\varrho >0\) and \(\mathscr {C}= \{{{\bar{c}}^i}\}_{i\in I} \subset \mathscr {P}^\varrho \), the following are equivalent:

  1. (1)

    The family \(\mathscr {C}\) is uniform integrable, that is

    $$\begin{aligned} \lim _{l\rightarrow \infty } \sup _{{\bar{c}}\in \mathscr {C}} \sum _{k\ge l} (1+k)\, {\bar{c}}_k \rightarrow 0. \end{aligned}$$
  2. (2)

    There exists a positive increasing superlinear sequence \((g_k)_{k\ge 0}\) such that

    $$\begin{aligned} \sup _{{\bar{c}} \in \mathscr {C}}\sum _{k\ge 0} g_k\, {\bar{c}}_k < \infty . \end{aligned}$$
    (A.1)

    Moreover, \((g_k)_{k\ge 0}\) can be chosen to satisfy the bound

    $$\begin{aligned} 0< (k+1)\,(g_{k+1} - g_k) \le 2\, g_k \qquad \text {for } k\ge 0 \end{aligned}$$
    (A.2)

Proof

The implication (2)\(\Rightarrow \)(1) is a straightforward consequence of the superlinear growth of \((g_k)_{k\ge 0}\) implying for any \({\bar{c}}\in \mathscr {C}\)

$$\begin{aligned} \sum _{k\ge l} (1+k)\, {\bar{c}}_k \le \frac{1+l}{g_l} \sum _{k\ge l} g_k {\bar{c}}_k \le \frac{1+l}{g_l} \sum _{k\ge 0} g_k {\bar{c}}_k. \end{aligned}$$

Taking the \(\sup \) over \(\mathscr {C}\) and letting \(l\rightarrow \infty \) proves the implication.

For the proof of (1)\(\Rightarrow \)(2), the construction from Cañizo (2006) based on Dellacherie and Meyer (Dellacherie and Meyer 1978, Theorem 22) is modified to satisfy condition (A.2). The tail distribution of \({\bar{c}}^i\) for \(i\in I\) is defined by

$$\begin{aligned} C_k^i = \sum _{l\ge k} (l+1)\, {\bar{c}}_l^i \qquad \text { for } k\ge 0. \end{aligned}$$

Two auxiliary increasing sequences \((a_n)_{n\ge 1}\) and \((\ell _n)_{n\ge 0}\) are defined by

$$\begin{aligned} a_n = \inf \left\{ k\ge 0\,\bigg |\, \sup _{i\in I} C_k^i \le \frac{1}{n^2} \right\} \quad \text { for } n \ge 1 , \end{aligned}$$

and inductively \(\ell _{n+1} = \max \{{ \ell _n+1 , a_{n+1}+1}\}\) starting with \(\ell _0 = 0\). Then by construction, it holds \(\sup _{i \in I} C_{\ell _n}^i \le \frac{1}{n^2}\) for \(n\ge 1\) and \(C_0 = 1+\varrho \). One more auxiliary sequence \((\varphi _k)_{k\ge 0}\) is given by

$$\begin{aligned} \varphi _k = n+1 \qquad \text {for } k\in [\ell _n, \ell _{n+1}). \end{aligned}$$

By construction \(\varphi _k\rightarrow \infty \) as \(k\rightarrow \infty \), since \(\varphi _k \ge n+1\) for \(k\ge \ell _n\). Then, the candidate for \(g_k\) is the sequence \(\varphi _k\, (k+1)\). Indeed, it holds for any \(i\in I\)

$$\begin{aligned} \sum _{k\ge 0} \varphi _k\, (k+1)\, {\bar{c}}_k^i= & {} \sum _{n\ge 0} (n+1) \sum _{k=\ell _n}^{\ell _{n+1}-1} (k+1), {\bar{c}}_k^i = \sum _{n\ge 0} \sum _{k\ge \ell _n} (k+1)\, {\bar{c}}_k^i \\= & {} \sum _{n\ge 0} C_{\ell _n}^i \le 1+\varrho + \sum _{n\ge 1} \frac{1}{n^2} < \infty . \end{aligned}$$

To verify condition (A.2), it is necessary to regularize the sequence \((\varphi _k)_{k\ge 1}\) by defining the following interpolation: \(d_0=1\) and \(\Phi _0=0\) and inductively for \(n\ge 0\)

$$\begin{aligned} d_{n+1}= & {} \min \left\{ { d_n , \frac{n+1 - \Phi _{\ell _n}}{\ell _{n+1} - \ell _n}, \frac{1}{\ell _{n+ 1}}}\right\} \ ; \\ \Phi _k= & {} \Phi _{\ell _n} + d_n ({k - \ell _n}) \qquad \text {for } k\in [\ell _n , \ell _{n+1}) . \end{aligned}$$

The construction ensures that \(\Phi _k\) is an increasing sequence with \(\Phi _k \le \varphi _k\). Hence, \(g_k = \Phi _k\, (k+1) + 1\) still satisfies (A.1) with an additional constant \(1+\varrho \) on the right-hand side. Finally to show (A.2), note that for \(k\in [\ell _n, \ell _{n+1})\) it holds

$$\begin{aligned} \Phi _{k+1} - \Phi _k \le d_{n+1} \le \frac{1}{\ell _{n+1}} \le \frac{1}{k+1}. \end{aligned}$$

Hence, estimate (A.1) follows from

$$\begin{aligned} (k+1)\,({g_{k+1} -g_k}) = (k+1)\, \big ({ (k+1) \Phi _{k+1} - k \Phi _k}\big ) \le (k+1)\, ({ 1 + \Phi _k}) \le 2\, g_k , \end{aligned}$$

where the lower bound \(\Phi _k \ge 1\) was used in the last step. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlichting, A. The Exchange-Driven Growth Model: Basic Properties and Longtime Behavior. J Nonlinear Sci 30, 793–830 (2020). https://doi.org/10.1007/s00332-019-09592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09592-x

Keywords

Mathematics Subject Classification

Navigation