Skip to main content
Log in

On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The Boussinesq equations play a fundamental role in meteorology. Among other aspects, they aim to model the process of frontogenesis and describe large-scale atmospheric and oceanic flows. In this work, we establish the existence and uniqueness of maximal strong solutions of the stochastic Boussinesq equations with transport noise in Sobolev spaces and construct a blow-up criterion. For this, in particular, we derive some general estimates, which turn out to be crucial for showing the well-posedness of a broader range of stochastic partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Orán, D., Bethencourt de León, A., Takao, S.: The Burgers’ equation with stochastic transport: shock formation, local and global existence of smooth solutions (2018). arXiv:1808.07821v1 [math.AP]

  • Alonso-Orán, D., de León, A.: Bethencourt: stability, well-posedness and blow-up criterion for the incompressible slice model. Phys. D Nonlinear Phenom. 392, 99–118 (2019)

    Google Scholar 

  • Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    MATH  Google Scholar 

  • Bénard, M.: Les tourbillons cellulaires dans une nappe liquide transportant de chaleur par convection en regime permanent. Ann. Chim. Phys. 23, 62–144 (1901)

    MATH  Google Scholar 

  • Bensoussan, A., Frehse, J.: Local solutions for stochastic Navier Stokes equations. Math. Model. Numer. Anal. 34(2), 241–273 (2000). (Special issue for R. Temam’s 60th birthday)

    MathSciNet  MATH  Google Scholar 

  • Bensoussan, A., Temam, R.: Équations aux dérivées partielles stochastiques non linéaires. Israel J. Math. 11, 95–129 (1972)

    MathSciNet  MATH  Google Scholar 

  • Bensoussan, A., Temam, R.: Équations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)

    MATH  Google Scholar 

  • Bessaih, H.: Martingale solutions for stochastic Euler equations. Stoch. Anal. Appl. 17, 713–725 (1999)

    MathSciNet  MATH  Google Scholar 

  • Bessaih, H., Hausenblas, E., Razafimandimby, P.: Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type. Nonlinear Differ. Equ. Appl. 22(6), 1661–1697 (2015)

    MathSciNet  MATH  Google Scholar 

  • Boussinesq, J.V.: Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande section. Des comptes rendus des séances des sciences (1897)

  • Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Diff. Equ. 5(7), 773–789 (1980)

    MathSciNet  MATH  Google Scholar 

  • Brzeniak, Z., Motyl, E.: Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains. J. Differ. Equ. 254, 1627–1685 (2013)

    MathSciNet  MATH  Google Scholar 

  • Brzeniak, Z., Peszat, S.: Stochastic two dimensional Euler equations. Ann. Probab. 20(4), 1796–1832 (2001)

    MathSciNet  MATH  Google Scholar 

  • Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 61(3–4), 245–295 (1997)

    MathSciNet  MATH  Google Scholar 

  • Brzeźniak, Z., Motyl, E.: The existence of martingale solutions to the stochastic Boussinesq equations. Glob. Stoch. Anal. 1, 175–216 (2014)

    MATH  Google Scholar 

  • Busse, F.: Fundamentals of thermal convection. Mantle Convections, Plate Tectonics and Global Dynamics (1989)

  • Cannon, J.R., Di Benedetto, E.: The initial value problem for the Boussinesq equations with data. In: \(L^{p}\), Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 129–144. Springer, Berlin (1980)

  • Capiski, M., Cutland, J.: Stochastic Euler equations on the torus. Ann. Appl. Probab. 9, 688–705 (1999)

    MathSciNet  MATH  Google Scholar 

  • Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203(2), 497–513 (2006)

    MathSciNet  MATH  Google Scholar 

  • Chae, D., Wu, J.: The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math. 230, 1618–1645 (2012)

    MathSciNet  MATH  Google Scholar 

  • Cotter, C., Crisan, D., Holm, D., Pan, W., Shevchenko, I.: Numerically modeling stochastic Lie transport in fluid dynamics. Multiscale Model. Simul. 17(1), 192–232 (2019). https://doi.org/10.1137/18M1167929

    Article  MathSciNet  MATH  Google Scholar 

  • Crisan, D., Flandoli, F., Holm, D.D.: Solution properties of a 3D stochastic Euler fluid equation. J. Nonlinear Sci. 29, 813–870 (2019). https://doi.org/10.1007/s00332-018-9506-6

    Article  MathSciNet  MATH  Google Scholar 

  • Crisan, D., Lang, O.: Well-posedness for a stochastic 2D Euler equation with transport noise (2019). arXiv Preprint arXiv:1907.00451

  • Cruzeiro, A., Flandoli, F., Malliavin, P.: Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation. J. Funct. Anal. 242, 304–326 (2007)

    MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  • Du, L.: The local existence of strong solution for the stochastic 3D Boussinesq equations. Bound Value Probl. 2019, 42 (2019)

    MathSciNet  Google Scholar 

  • Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl. 119, 2052–2081 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ferrario, B.: The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl. 4, 101–121 (1997)

    MATH  Google Scholar 

  • Flandoli, F.: Stochastic differential equations in fluid dynamics. Semin. Mat. e. Fis. di Milano 66, 121 (1996). https://doi.org/10.1007/BF02925357

    Article  MathSciNet  MATH  Google Scholar 

  • Flandoli, F.: Random perturbation of PDEs and fluid dynamic models. In: Saint Flour Summer School Lectures 2010. Lecture Notes in Mathematics. Springer, Berlin (2010)

  • Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  • Flandoli, F., Luo, D.: Euler-Lagrangian approach to 3D stochastic Euler equation. J. Geom. Mech. 11(2), 153–165 (2019)

    MathSciNet  Google Scholar 

  • Flandoli, F., Romito, M.: Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc. 354(6), 2207–2241 (2002)

    MathSciNet  MATH  Google Scholar 

  • Glatt-Holtz, N., Vicol, V.: Local and global existence of smooth solutions for the stochastic Euler equation with multiplicative noise. Ann. Probab. 42, 80–145 (2014). https://doi.org/10.1214/12-AOP773

    Article  MathSciNet  MATH  Google Scholar 

  • Glatt-Holtz, N., Ziane, M.: Strong pathwise solutions of the stochastic Navier–Stokes system. Adv. Differ. Equ. 14(5–6), 567–600 (2009)

    MathSciNet  MATH  Google Scholar 

  • Goldstein, J.: Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  • Gyongy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    MATH  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (1980)

  • Holm, D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471, 20140963 (2015)

    MathSciNet  MATH  Google Scholar 

  • Holm, D.: Comparing stochastic evolution of fluids and electromagnetic waves (2018). arXiv:1705.07645v3 [math-ph]

  • Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Classics in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Hou, T., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12, 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  • Kim, J.: On the stochastic Euler equations in a two-dimensional domain. SIAM J. Math. Anal. 33, 1211–1227 (2002)

    MathSciNet  MATH  Google Scholar 

  • Lions, J.: Quelques méthodes de résolution des problèmes aux limites non linéares. Dunod, Paris (1969)

    MATH  Google Scholar 

  • Lord Rayleigh, O.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser. 6(32), 529–546 (1916)

    MATH  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)

    MATH  Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    MATH  Google Scholar 

  • Richardson, L.: Weather Prediction by Numerical Process. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Schochet, S.: The point-vortex method for periodic weak solutions of the 2-D Euler equations. Commun. Pure Appl. Math. 91, 1–965 (1996)

    MathSciNet  MATH  Google Scholar 

  • Taylor, M.: Pseudo Differential Operators. Lecture Notes in Mathematics, vol. 416. Springer, Berlin (1976)

  • Xueke, P., Boling, G.: Global well-posedness of the stochastic 2D Boussinesq equations with partial viscosity. Acta Math. Sci. 31B, 1968–1984 (2011)

    MathSciNet  MATH  Google Scholar 

  • Yamazaki, K.: Global martingale solution for the stochastic Boussinesq system with zero dissipation. Stoch. Anal. Appl. 34(3), 404–426 (2016)

    MathSciNet  MATH  Google Scholar 

  • Yang, C., Zhao, Z.: Perturbation of stochastic Boussinesq equations with multiplicative white noise. Discrete Dyn. Nat. Soc. 2013, 6 (2013)

    MathSciNet  MATH  Google Scholar 

  • Yokoyama, S.: Construction of weak solutions of a certain stochastic Navier–Stokes equation. Stochastics 86(4), 573–593 (2014)

    MathSciNet  MATH  Google Scholar 

  • Yudovich, V.I.: Eleven great problems of mathematical hydrodynamics. Mosc. Math. J. 3(2), 711–737 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to D. Holm and A. Córdoba for useful discussions. Moreover, we would like to thank the anonymous referees for their insightful comments and suggestions. The first author has been partially supported by the Grant MTM2017-83496-P from the Spanish Ministry of Economy and Competitiveness and through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0554). The second author has been supported by the Mathematics of Planet Earth Centre of Doctoral Training (MPE CDT) and Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Alonso-Orán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. The Generalised Lie Derivatives Estimates

Appendix A. The Generalised Lie Derivatives Estimates

We collect in this appendix the proof of Proposition 2.1, dealing with the bounds on the Lie derivatives. The proof is derived from a more general result for linear operators of order one which turns out to be quite useful. We will provide the proof of this statement and comment on its various possible applications. The idea is to extend the results in Crisan et al. (2019), by modifying their argument to be more general. More precisely, we provide an extension of their result to higher- or fractional-order differential operators and general linear differential operators of first order (i.e. not only 3D Lie derivatives). This shows that the special cancellations taking place in Crisan et al. (2019) not only occur due to the particularities of the Laplace operator and the Lie derivative noise type, but due to something more essential. The main idea behind our proof presented in this appendix relies on the fact that commutators of differential operators become slightly less singular operators.

We first claim that the following inequality holds for every smooth enough vector field f,

$$\begin{aligned} \langle \mathcal {Q}^{2}f,f \rangle _{L^2} + \langle \mathcal {Q}f,\mathcal {Q}f \rangle _{L^2} \lesssim ||f||^{2}_{L^{2}}. \end{aligned}$$
(A.1)

Here, Q is a linear differential operator of first order with bounded smooth coefficients. Indeed, this follows after a straightforward computation, since

$$\begin{aligned} \langle \mathcal {Q}^2 f, f \rangle _{L^{2}} = \langle \mathcal {Q} f, \mathcal {Q}^{\star } f \rangle _{L^2} = - \langle \mathcal {Q} f, \mathcal {Q} f \rangle _{L^{2}} + \langle \mathcal {Q} f, E f\rangle _{L^2}, \end{aligned}$$
(A.2)

where \(\mathcal {Q}^{\star }\) denotes the adjoint operator of \(\mathcal {Q}\) under the \(L^{2}\) pairing. Note that we have used

$$\begin{aligned} \mathcal {Q}^* = - \mathcal {Q} + E \end{aligned}$$
(A.3)

where E is a zero-order operator, which follows from the general theory of differential operators. The last term on the right-hand side of (A.2) can be rewritten as

$$\begin{aligned} \langle \mathcal {Q}f, Ef \rangle _{L^2}= & {} - \langle f, \mathcal {Q} E f\rangle _{L^2} + \langle f, E^{2}f \rangle _{L^2} \\= & {} - \langle f, E\mathcal {Q}f\rangle _{L^2} - \langle f,T_{0} f\rangle _{L^2} + \langle f, E^{2}f \rangle _{L^2} \\= & {} - \langle Ef,\mathcal {Q}f \rangle _{L^2} - \langle f, T_{0} f\rangle _{L^2} + \langle f,E^{2}f\rangle _{L^2}, \end{aligned}$$

since

$$\begin{aligned} \mathcal {Q}E-E\mathcal {Q}= [\mathcal {Q},E]= T_{0}, \end{aligned}$$

where \(T_{0} \) is a zero-order differential operator and the fact that \(\langle Ef,g \rangle _{L^2} = \langle f,Eg \rangle _{L^2},\) for any \(L^{2}\) integrable smooth vector fields fg. Hence,

$$\begin{aligned} | \langle \mathcal {Q}^2 f, f \rangle _{L^{2}} + \langle \mathcal {Q} f, \mathcal {Q}f \rangle _{L^{2}} | = (1/2) | \langle f, T_{0} f\rangle _{L^2} + \langle f,E^{2}f\rangle _{L^2} | \lesssim ||f||^{2}_{L^2}. \end{aligned}$$

Next, let us show that for every smooth enough f,

$$\begin{aligned} \langle \mathcal {P}\mathcal {Q}^{2}f,\mathcal {P} f \rangle _{L^{2}} + \langle \mathcal {P}\mathcal {Q}f, \mathcal {P}\mathcal {Q} f \rangle _{L^2} \lesssim ||f||^{2}_{H^{k}}, \end{aligned}$$
(A.4)

where \(\mathcal {P}\) is a pseudodifferential operator of order \(k \in [1,\infty )\), and Q is a linear differential operator of first order with smooth bounded coefficients. First, let us define

$$\begin{aligned} T_{1} = \mathcal {P} \mathcal {Q} - \mathcal {Q} \mathcal {P}=[\mathcal {P}, \mathcal {Q}]. \end{aligned}$$

The classical theory of pseudodifferential operators states that the resulting commutator is of order k (c.f. Taylor 1976; Hörmander 2007). Following the same idea, let us define

$$\begin{aligned} T_{2} = T_{1} \mathcal {Q} - \mathcal {Q} T_{1} = [T_{1}, \mathcal {Q}], \end{aligned}$$

which is also an operator of order k for the same reason. Hence, we have

$$\begin{aligned} \langle \mathcal {P} \mathcal {Q}^2 f,\mathcal {P} f \rangle _{L^{2}}= & {} \langle (\mathcal {Q} \mathcal {P} + T_1) \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\= & {} \langle \mathcal {Q} \mathcal {P} \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} + \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\= & {} \langle \mathcal {P} \mathcal {Q} f, \mathcal {Q}^{\star } \mathcal {P} f \rangle _{L^2} + \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\= & {} -\langle \mathcal {P} \mathcal {Q} f, \mathcal {Q} \mathcal {P} f \rangle _{L^2} + \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2} + \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\= & {} -\langle \mathcal {P} \mathcal {Q} f, \mathcal {P} \mathcal {Q} f \rangle _{L^2} + \langle \mathcal {P} \mathcal {Q} f, T_{1} f \rangle _{L^2} + \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\&+ \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2}, \end{aligned}$$

where we have used the definition of \(T_1\) and (A.3). Therefore,

$$\begin{aligned}&\langle \mathcal {P} \mathcal {Q}^2 f,\mathcal {P} f \rangle _{L^{2}} + \langle \mathcal {P} \mathcal {Q} f, \mathcal {P} \mathcal {Q} f \rangle _{L^2}\nonumber \\&= \langle \mathcal {P} \mathcal {Q} f, T_{1} f \rangle _{L^2}+ \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} + \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2}. \end{aligned}$$
(A.5)

Once again, manipulating the above equality (A.5), we obtain

$$\begin{aligned}&\langle \mathcal {P} \mathcal {Q}^2 f,\mathcal {P} f \rangle _{L^{2}} + \langle \mathcal {P} \mathcal {Q} f, \mathcal {P} \mathcal {Q} f \rangle _{L^2}\\= & {} \langle \mathcal {Q} \mathcal {P} f, T_{1} f \rangle _{L^2} + \langle T_{1} f, T_{1} f\rangle _{L^{2}} +\langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} + \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2} \\= & {} - \langle \mathcal {P} f,\mathcal {Q} T_{1} f \rangle _{L^2} + \langle T_{1}f, T_{1}f\rangle _{L^{2}} + \langle T_1 \mathcal {Q} f, \mathcal {P} f \rangle _{L^2} \\&+ \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2} + \langle \mathcal {P} f, E T_1 f \rangle _{L^2} \\= & {} \langle (T_{1}\mathcal {Q} - \mathcal {Q}T_{1})f,\mathcal {P} f \rangle _{L^2} + \langle T_{1}f, T_{1}f\rangle _{L^{2}} + \langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2} \\&+ \langle \mathcal {P} f, E T_1 f \rangle _{L^2} \\= & {} \langle T_{2} f, \mathcal {P} f \rangle _{L^2} + \langle T_{1}f, T_{1}f\rangle _{L^{2}} + \langle \mathcal {P} f, E T_1 f \rangle _{L^2}+\langle \mathcal {P} \mathcal {Q} f, E \mathcal {P} f \rangle _{L^2} , \end{aligned}$$

Notice that the last term on the right-hand side in the last equality seems to be singular as well. However, one can manage it as follows:

$$\begin{aligned} \langle \mathcal {P}\mathcal {Q}f, E\mathcal {P}f\rangle _{L^2}= & {} \langle (\mathcal {Q}\mathcal {P}+T_{1})f, E\mathcal {P}f\rangle _{L^2}= \langle \mathcal {Q}\mathcal {P}f, E\mathcal {P}f\rangle _{L^{2}}+\langle T_{1}f, E\mathcal {P}f\rangle _{L^{2}}\\= & {} -\langle \mathcal {P}f, \mathcal {Q}E\mathcal {P}f\rangle _{L^2}+\langle \mathcal {P}f,E^{2}\mathcal {P}f\rangle _{L^2}+\langle T_{1}f,E\mathcal {P}f\rangle _{L^{2}}\\= & {} -\langle \mathcal {P}f, E\mathcal {Q}\mathcal {P}f\rangle _{L^2}-\langle \mathcal {P}f,T_0\mathcal {P}f\rangle _{L^2}\\&+\langle \mathcal {P}f,E^{2}\mathcal {P}f\rangle _{L^2}+\langle T_{1}f, E\mathcal {P}f\rangle _{L^2} \\= & {} -\langle E\mathcal {P}f, \mathcal {Q}\mathcal {P}f\rangle _{L^{2}}-\langle \mathcal {P}f,T_0 \mathcal {P}f\rangle _{L^2} \\&+\langle \mathcal {P}f,E^{2}\mathcal {P}f\rangle _{L^2}+\langle T_{1}f, E\mathcal {P}f\rangle _{L^2}, \end{aligned}$$

where we have used (A.3) and the commutators constructed above. Hence,

$$\begin{aligned} 2 \langle \mathcal {P}\mathcal {Q}f, E\mathcal {P}f\rangle _{L^2} = - \langle \mathcal {P}f,T_0\mathcal {P}f\rangle _{L^2}+\langle \mathcal {P}f,E^{2}\mathcal {P}f\rangle _{L^2}+2\langle T_{1}f, E\mathcal {P}f\rangle _{L^2}.\end{aligned}$$

Finally, by applying Hölder’s inequality, plus the fact that \(T_{1},T_{2},\mathcal {P}\) are differential operators of order k,  and \(E,T_{0}\) are zero-order operators, we conclude that

$$\begin{aligned} \bigg |\langle \mathcal {P}\mathcal {Q}^{2}f,\mathcal {P} f \rangle _{L^{2}} + \langle \mathcal {P}\mathcal {Q}f, \mathcal {P}\mathcal {Q} f \rangle _{L^2} \bigg |= & {} \biggl | \langle T_{2} f, \mathcal {P} f \rangle _{L^2} \\&+ \langle T_{1}f, T_{1}f\rangle _{L^{2}}+\langle \mathcal {P} f, E T_1 f \rangle _{L^2} \\&-\frac{1}{2}\langle \mathcal {P}f,T_{0}\mathcal {P}f\rangle _{L^2} +\frac{1}{2}\langle \mathcal {P}f,E^{2}\mathcal {P}f\rangle _{L^2}\\&+\langle T_{1}f, E\mathcal {P}f\rangle _{L^2}\biggl | \lesssim \left\| f\right\| ^{2}_{H^{k}}. \end{aligned}$$

Remark A.1

It is easy to see that (2.10) and (2.11) represent a particular case of inequalities (A.1) and (A.4). Indeed, let \(\mathcal {Q}=\mathcal {L}_{\xi _{i}}\) and f be a smooth scalar function. Then, we have that \(\mathcal {Q}^{\star }=-\mathcal {Q},\) yielding (2.10). On the other hand, inequality (2.11) follows by taking \(\mathcal {Q}=\mathcal {L}_{\xi _{i}}\), \(\mathcal {P}=\Lambda ^{k},\) and f a smooth scalar function. It is also worth noting that we have proven our estimates for smooth vector fields f taking values in \(\mathbb {T}^{2},\) but they extend to the whole space \(\mathbb {R}^{2}\) without modifying the argument. Moreover, since all the commutator properties are also available for compact manifolds M, these estimates are also valid in that context.

Remark A.2

It is also important to note that the Lie derivative estimates in Crisan et al. (2019) can be extended to higher fractional-order differential operators \(\mathcal {P}\) and general first-order linear operators \(\mathcal {Q}\), hence proving well-posedness results and blow-up criteria for a broader and much more general noise type.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Orán, D., Bethencourt de León, A. On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise. J Nonlinear Sci 30, 175–224 (2020). https://doi.org/10.1007/s00332-019-09571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09571-2

Keywords

Mathematics Subject Classification

Navigation