Skip to main content
Log in

The Global Existence and Averaging Theorem for the Strong Solution of the Stochastic Boussinesq Equations with the Low Froude Number

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Considering the stochastic Boussinesq equations with additive noise, we prove the global existence for the strong solution in the case of strong stable stratification. The averaging theorem is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abels, H., Marquardt, A.: Sharp interface limit of a Stokes/Cahn–Hilliard system, part i:convergenc result. arXiv:2003.03139v2 (2020)

  2. Abels, H., Marquardt, A.: Sharp interface limit of a Stokes/Cahn–Hilliard system, Part II: approximate solutions. J. Math. Fluid Mech. 23(38), 1–48 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Babin, A., Mahalov, A., Nicolaenko, B.: Global splitting, integrability and regularity of 3D Euler and Navier–Stokes equations for uniformly rotating fluids. Eur. J. Mech. B Fluids 15(3), 291–300 (1996)

    MATH  Google Scholar 

  4. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Appl. Math. Lett. 13(4), 51–57 (2000)

    Article  MathSciNet  Google Scholar 

  5. Brzeźniak, Z., Motyl, E.: The existence of martingale solutions to the stochastic Boussinesq equations. Global Stochast. Anal. 2(1), 175–216 (2011)

    MATH  Google Scholar 

  6. Chemin, J.Y.: à propos d’un problème de pénalisation de type antisymétrique. J. Math. Pures Appl. (9) 76(9), 739–755 (1997)’

  7. Chemin, J.Y., Desjardins, B., Gallagher, I.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32. The Clarendon Press, Oxford University Press, Oxford (2006)

  8. Chemin, J.Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., vol. 31, pp. 171–192. North-Holland, Amsterdam (2002)

  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 152, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Du, L.: The local existence of strong solution for the stochastic 3D Boussinesq equations. Bound. Value Probl. 2019, 42 (2019)

    Article  MathSciNet  Google Scholar 

  11. Du, L., Zhang, T.: Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises. Stochastic Process. Appl. 130(3), 1545–1567 (2020)

    Article  MathSciNet  Google Scholar 

  12. Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stochastic Process. Appl. 119(6), 2052–2081 (2009)

    Article  MathSciNet  Google Scholar 

  13. Flandoli, F., Mahalov, A.: Stochastic three-dimensional rotating Navier–Stokes equations: averaging, convergence and regularity. Arch. Ration. Mech. Anal. 205(1), 195–237 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gallagher, I.: Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl. 77(10), 989–1054 (1998)

  15. Glatt-Holtz, N., Vicol, V.: Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42(1), 80–145 (2014)

    Article  MathSciNet  Google Scholar 

  16. Grenier, E.: Oscillatory perturbations of the Navier–Stokes equations. J. Math. Pures Appl. 76(6), 477–498 (1997)

    Article  MathSciNet  Google Scholar 

  17. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105(2), 143–158 (1996)

  18. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  19. Majda, A.: Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics, vol. 9. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  20. Mensaj, P.R.: A multi-scale limit of a randomly forced rotating 3d-compressible fluid. J. Math. Fluid Mech. 30(22), 1–33 (2020)

    Google Scholar 

  21. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. Scrobogna, S.: Derivation of limit equations for a singular perturbation of a 3D periodic Boussinesq system. Discrete Contin. Dyn. Syst. 37(12), 5979–6034 (2017)

    Article  MathSciNet  Google Scholar 

  23. Widmayer, K.: Convergence to stratified flow for an inviscid 3D Boussinesq system. Commun. Math. Sci. 16(6), 1713–1728 (2018)

    Article  MathSciNet  Google Scholar 

  24. Yang, H., Zhu, R.: Weak solutions to the sharp interface limit of stochastic Cahn–Hilliard equations. arXiv:1905.09182v1 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by E. Feireisl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Du’s research is support by National Natural Science Foundation of China 12101460 and China Postdoctoral Science Foundation (No. 2019M650580). T. Zhang’s research is supported by National Natural Science Foundation of China 11931010, 11621101 and 11771389.

A The Proof of Lemma 5.1

A The Proof of Lemma 5.1

Proof

First we proof the operator \({\mathcal {B}}^\varepsilon \) and \({\mathcal {B}}^0\) satisfy “cancelation property”. From Sect. 2, we know that the nonzero eigenvalue of \({\mathbf {P}}{\mathcal {A}}\) is pure imaginary, hence \({\mathcal {L}}^*(t)={\mathcal {L}}(-t)\). Then

$$\begin{aligned} \big ({\mathcal {B}}^{\varepsilon }(U,U),U\big )_{L^2}&=\big ({\mathcal {L}}\left( t/\varepsilon \right) {\mathbf {P}}\left( {\mathcal {L}}\left( -t/\varepsilon \right) U\cdot \nabla {\mathcal {L}}\left( -t/\varepsilon \right) U\right) ,U\big )_{L^2}\nonumber \\&=\big (\left( {\mathcal {L}}\left( -t/\varepsilon \right) U\cdot \nabla {\mathcal {L}}\left( -t/\varepsilon \right) U\right) ,{\mathcal {L}}\left( -t/\varepsilon \right) U\big )_{L^2}\nonumber \\&=\frac{1}{2}\left( \mathrm {div}\left( {\mathcal {L}}\left( -t/\varepsilon \right) U\right) ,\left| {\mathcal {L}}\left( -t/\varepsilon \right) U\right| ^2\right) _{L^2}\nonumber \\&=0. \end{aligned}$$

Now, we begin to consider the operator \({\mathcal {B}}\). By the definition of \({\mathcal {B}}\), we mention that

$$\begin{aligned} \big ({\mathcal {B}}(U,U),U\big )_{L^2}&=\sum _{n}\sum _{\begin{array}{c} \lambda _{k,m,n}^{a,b,c}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}\sum _{l=1}^4\sum _{j=1}^3 U(k)\varphi _k^{a,j}m_j U(m)\varphi _m^{b,l}{\bar{U}}(n){\bar{\varphi }}_n^{c,l}\nonumber \\&=\sum _{n}\sum _{\begin{array}{c} \lambda _{k,m,n}^{a,b,c}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}\sum _{l=1}^4\sum _{j=1}^3 U(k)\varphi _k^{a,j}n_j U(m)\varphi _m^{b,l}{\bar{U}}(n){\bar{\varphi }}_n^{c,l}\nonumber \\&=-\sum _{n}\sum _{\begin{array}{c} \lambda _{k,m,n}^{a,b,c}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}\sum _{l=1}^4\sum _{j=1}^3 U(-k)\varphi _{-k}^{a,j}n_j U(n)\varphi _n^{c,l}{\bar{U}}(m){\bar{\varphi }}_m^{b,l}\nonumber \\&=-\sum _{n}\sum _{\begin{array}{c} \lambda _{-k,n,m}^{a,c,b}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}\sum _{l=1}^4\sum _{j=1}^3 U(k)\varphi _k^{a,j}m_j U(m)\varphi _m^{b,l}{\bar{U}}(n){\bar{\varphi }}_n^{c,l}. \end{aligned}$$

We note that

$$\begin{aligned} \sum _{\begin{array}{c} \lambda _{-k,n,m}^{a,c,b}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}U(k)\varphi _k^{a,j}m_j U(m)\varphi _m^{b,l}{\bar{U}}(n){\bar{\varphi }}_n^{c,l}= \sum _{\begin{array}{c} \lambda _{k,m,n}^{a,b,c}=0\\ k+m=n\\ a,b,c\in \{0,\pm \} \end{array}}U(k)\varphi _k^{a,j}m_j U(m)\varphi _m^{b,l}{\bar{U}}(n){\bar{\varphi }}_n^{c,l}. \end{aligned}$$

For example,

$$\begin{aligned} \lambda _{-k,n,m}^{a,c,b}{\mathbf {1}}_{(b,c)= (+,-)}&=\lambda ^a(-k)+\lambda ^-(n)-\lambda ^+(m)\\&=\lambda ^a(k)+\lambda ^-(m)-\lambda ^+(n)\\&=\lambda _{k,m,n}^{a,b,c}{\mathbf {1}}_{(b,c)= (-,+)}. \end{aligned}$$

The other cases can be verify similarly. Hence

$$\begin{aligned} \big ({\mathcal {B}}^0(U,U),U\big )_{L^2}=-\big ({\mathcal {B}}^0(U,U),U\big )_{L^2}=0. \end{aligned}$$

Combine the It’o formula for \(\Vert W\Vert _{L^2}^p\) and the equation for W of (4.1), for \(p\ge 2\), we find

$$\begin{aligned}&\mathrm {d}\Vert W^\varepsilon \Vert _{L^2}^p+\Vert W\Vert _{L^2}^{p-2}\Vert \nabla W^\varepsilon \Vert _{L^2}^2\mathrm {d}t\nonumber \\&\quad =\frac{p}{2}\Vert W^\varepsilon \Vert _{L^2}^{p-2}\Vert {\mathcal {Q}}^\varepsilon \Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t+\frac{p(p-2)}{2}\Vert W^\varepsilon \Vert _{L^2}^2\Vert ({\mathcal {Q}}^\varepsilon ,W)_{L^2}\Vert _{L_2({\mathfrak {U}};{\mathbb {R}})}^{p-4}\mathrm {d}t\nonumber \\&\qquad +\Vert W\Vert _{L^2}^{p-2}(W,{\mathcal {Q}}^\varepsilon \mathrm {d}{\mathcal {W}})\nonumber \\&\quad =:H_1\mathrm {d}t+H_2\mathrm {d}{\mathcal {W}}. \end{aligned}$$
(A1)

We bounded \(H_1\) as

$$\begin{aligned} \int _0^T H_1\mathrm {d}t&\le \frac{p(p-1)}{2}\int _0^T\Vert W^\varepsilon \Vert _{L^2}^{p-2}\Vert {\mathcal {Q}}^\varepsilon \Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\nonumber \\&\le C\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^{p-2}\int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\nonumber \\&\le \frac{1}{4}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^p+C\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^{p/2}. \end{aligned}$$
(A2)

Applying the Burkholder–Davis–Gundy inequality (2.4), we have

$$\begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,T]}\int _0^t H_2\mathrm {d}{\mathcal {W}}&\le C{\mathbb {E}}\left( \int _0^T\Vert W^\varepsilon \Vert _{L^2}^{2p-2}\Vert {\mathcal {Q}}^\varepsilon \Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^{1/2}\nonumber \\&\le C{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^{p-1}\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^{1/2}\nonumber \\&\le \frac{1}{4}{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^p+C{\mathbb {E}}\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^{p/2}. \end{aligned}$$
(A3)

Insert (A2) and (A3) into (A1), we get

$$\begin{aligned}&{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^p+{\mathbb {E}}\int _0^T\Vert W^\varepsilon \Vert _{L^2}^{p-2}\Vert \nabla W^\varepsilon \Vert _{L^2}^2\mathrm {d}t\\&\quad \le C{\mathbb {E}}\Vert U_0\Vert _{L^2}^p+C{\mathbb {E}}\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^{p/2}. \end{aligned}$$

Taking \(p=4\) and \(p=16\), respectively, we obtain

$$\begin{aligned} {\mathbb {E}}(\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^4+\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^{16})\le C. \end{aligned}$$
(A4)

Using (A1) for \(p=2\), we obtain

$$\begin{aligned} {\mathbb {E}}\left( \int _0^T\Vert \nabla W^\varepsilon \Vert _{L^2}^2\mathrm {d}r\right) ^8&\le C{\mathbb {E}}\left( \int _0^T\Vert {\mathcal {Q}}^\varepsilon \Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^8+C{\mathbb {E}}\left( \int _0^T(W^\varepsilon ,{\mathcal {Q}}^\varepsilon \mathrm {d}{\mathcal {W}})_{L^2}\mathrm {d}t\right) ^8\nonumber \\&\le C{\mathbb {E}}\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^8+C{\mathbb {E}}\left( \int _0^T\Vert W^\varepsilon \Vert _{L^2}^2\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^4\nonumber \\&\le C+C{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^8\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^4\nonumber \\&\le C+C{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^{16}{\mathbb {E}}\left( \int _0^T\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^2\mathrm {d}t\right) ^8\nonumber \\ \quad&\le C, \end{aligned}$$
(A5)

where the Burkholder–Davis–Gundy inequality (2.4) is used in second line. For each \(\phi \in C^\infty \), we apply It’o formula for \((W^\varepsilon ,\phi ){L^2}\) and obtain

$$\begin{aligned} \mathrm {d}(W^\varepsilon ,\phi )_{L^2}&=(W^\varepsilon ,\Delta \phi )_{L^2}\mathrm {d}t+({\mathcal {B}}^0(W^\varepsilon ,W^\varepsilon ),\phi )_{L^2}\mathrm {d}t+(\phi ,{\mathcal {Q}}^\varepsilon \mathrm {d}{\mathcal {W}})_{L^2}\nonumber \\ :&=J_1\mathrm {d}t+J_2\mathrm {d}{\mathcal {W}}. \end{aligned}$$
(A6)

We bounded \(J_1\) as

$$\begin{aligned}&\int _{t_1}^{t_2}\left( (W^\varepsilon ,\Delta \phi )_{L^2}+({\mathcal {B}}^0(W^\varepsilon ,W^\varepsilon ),\phi )_{L^2}\right) \mathrm {d}r\nonumber \\&\quad \le C\int _{t_1}^{t_2}(\Vert W^\varepsilon \Vert _{L^2}\Vert \Delta \phi \Vert _{L^2}+\Vert \nabla \phi \Vert _{L^2}\Vert W^\varepsilon \Vert _{L^2}^{1/2} \Vert W^\varepsilon \Vert _{H^1}^{3/2})\mathrm {d}r\nonumber \\&\quad \le C\int _{t_1}^{t_2}\Vert W^\varepsilon \Vert _{L^2}^2\mathrm {d}r\int _{t_1}^{t_2}(1+\Vert W^\varepsilon \Vert _{H^1}^2)\mathrm {d}r\nonumber \\&\quad \le C(t_2-t_1)\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^2\int _{t_1}^{t_2}(1+\Vert W^\varepsilon \Vert _{H^1}^2)\mathrm {d}r. \end{aligned}$$
(A7)

Using the Burkholder–Davis–Gundy inequality (2.4) again, we obtain

$$\begin{aligned} {\mathbb {E}}\left( \int _{t_1}^{t_2}(\phi ,{\mathcal {Q}}^\varepsilon \mathrm {d}{\mathcal {W}})_{L^2}\right) ^4&\le C{\mathbb {E}}\left( \int _{t_1}^{t_2}\Vert \phi \Vert _{L^2}^2\Vert {\mathcal {Q}}^\varepsilon \Vert _{L_2({\mathfrak {U}};L^2)}^2\right) ^2\nonumber \\&\le C(t_2-t_1)^2\Vert \phi \Vert _{L^2}^4\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^4. \end{aligned}$$
(A8)

Hence, combine (A6)–(A8), and taking advantage of the bound (A4) and (A5), we have

$$\begin{aligned}&{\mathbb {E}}[|(W^\varepsilon (t_2),\phi )_{L^2}-(W^\varepsilon (t_1),\phi )_{L^2}|^4]\nonumber \\&\quad \le C(t_2-t_1)^4{\mathbb {E}}\left[ \sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^8\left( \int _{t_1}^{t_2}(1+\Vert W^\varepsilon \Vert _{H^1}^2)\mathrm {d}r\right) ^4\right] + C(t-s)^2\Vert \phi \Vert _{L^2}^4\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^4\nonumber \\&\quad \le C(t_2-t_1)^4{\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert W^\varepsilon \Vert _{L^2}^{16}{\mathbb {E}}\left( \int _{t_1}^{t_2}(1+\Vert W^\varepsilon \Vert _{H^1}^2)\mathrm {d}r\right) ^8+ C(t-s)^2\Vert \phi \Vert _{L^2}^4\Vert {\mathcal {Q}}\Vert _{L_2({\mathfrak {U}};L^2)}^4\nonumber \\&\quad \le C(t_2-t_1)^2. \end{aligned}$$

The proof for \(U^\varepsilon \) is as same as \(W^\varepsilon \), we omit it. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Zhang, T. The Global Existence and Averaging Theorem for the Strong Solution of the Stochastic Boussinesq Equations with the Low Froude Number. J. Math. Fluid Mech. 24, 32 (2022). https://doi.org/10.1007/s00021-022-00674-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00674-7

Keywords

Mathematics Subject Classification

Navigation