Skip to main content
Log in

Differential-Geometric-Control Formulation of Flapping Flight Multi-body Dynamics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling and analysis of such dynamics in the literature has long obstructed the discovery of some of the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing inertial effects and directly averaging the dynamics over the flapping cycle are two major simplifying assumptions that have been extensively used in the literature of flapping flight balance and stability analysis. By relaxing these assumptions and formulating the multi-body dynamics of flapping-wing micro-air-vehicles in a differential-geometric-control framework, we reveal a vibrational stabilization mechanism that greatly contributes to the body pitch stabilization. The discovered vibrational stabilization mechanism is induced by the interaction between the fast oscillatory aerodynamic loads on the wings and the relatively slow body motion. This stabilization mechanism provides an artificial stiffness (i.e., spring action) to the body rotation around its pitch axis. Such a spring action is similar to that of Kapitsa pendulum where the unstable inverted pendulum is stabilized through applying fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling and analysis of flapping flight dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrachev, A.A., Gamkrelidze, R.V.: The exponential representation of flows and the chronological calculus. Matemat. Sb. 149(4), 467–532 (1978)

    MATH  Google Scholar 

  • Bellman, R., Bentsman, J., Meerkov, S.M.: On vibrational stabilizability of nonlinear systems. J. Optim. Theory Appl. 46(4), 421–430 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Berman, G.J., Wang, Z.J.: Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582(1), 153,168 (2007)

    MathSciNet  MATH  Google Scholar 

  • Birch, J.M., Dickinson, M.H.: Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848), 729 (2001)

    Article  Google Scholar 

  • Birch, J.M., Dickson, W.B., Dickinson, M.H.: Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol. 207(7), 1063–1072 (2004)

    Article  Google Scholar 

  • Bullo, F.: Averaging and vibrational control of mechanical systems. SIAM J. Control Optim. 41(2), 542–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, vol. 49. Springer, Berlin (2004)

  • Cheng, B., Deng, X.: Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Trans. Robot. 27(5), 849–864 (2011)

    Article  MathSciNet  Google Scholar 

  • Dednam, W., Botha, A.E.: Optimized shooting method for finding periodic orbits of nonlinear dynamical systems. Eng. Comput. 31(4), 749–762 (2015)

    Article  Google Scholar 

  • Deng, X., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomemetic robotic insects: part II flight control design. IEEE Trans. Robot. 22(4), 789–803 (2006)

    Article  Google Scholar 

  • Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284(5422), 1954–1960 (1999)

    Article  Google Scholar 

  • Dietl, J.M., Garcia, E.: Stability in ornithopter longitudinal flight dynamics. J. Guid. Control Dyn. 31(4), 1157–1162 (2008a)

    Article  Google Scholar 

  • Dietl, J.M., Garcia, E.: Stability in ornithopter longitudinal flight dynamics. J. Guid. Control Dyn. 31(4), 1157–1163 (2008b)

    Article  Google Scholar 

  • Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O.: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control Dyn. 33(3), 724–739 (2010)

    Article  Google Scholar 

  • Dudley, R., Ellington, C.P.: Mechanics of forward flight in bumblebees: II. Quasi-steady lift and power requirements. J. Exp. Biol. 148, 53–88 (1990)

    Google Scholar 

  • Ellington, C.P.: The aerodynamics of hovering insect flight: III. Kinematics. Philos. Trans. R Soc. Lond Ser. B 305, 41–78 (1984a)

    Article  Google Scholar 

  • Ellington, C.P.: The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. Lond. Ser. B 305, 17–40 (1984b)

    Article  Google Scholar 

  • Ellington, C.P.: Unsteady aerodynamics of insect flight. In: Symposia of the Society for Experimental Biology, vol. 49, pp. 109–129 (1995)

  • Ellington, C.P., Van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  • Etkin, B.: Dynamics of Flight—Stabililty and Control. Wiley, Hoboken (1996)

    Google Scholar 

  • Gavin, H.: The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp. 1–15 (2011)

  • Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Hassan, A.M., Taha, H.E.: Higher-order averaging analysis of the nonlinear time-periodic dynamics of hovering insects/flapping-wing micro-air-vehicles. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7477–7482. IEEE (2016)

  • Hassan, A.M., Taha, H.E.: Combined averaging-shooting approach for the analysis of flapping flight dynamics. J. Guid. Control Dyn. 41(2), 542–549 (2017a)

    Article  Google Scholar 

  • Hassan, A.M., Taha, H.E.: A combined averaging-shooting approach for the trim analysis of hovering insects/flapping-wing micro-air-vehicles. In: AIAA Guidance, Navigation, and Control Conference, p. 1734 (2017b)

  • Hussein, A., Taha, H.E.: Minimum-time transition of FWMAVs from hovering to forward flight. In AIAA Atmospheric Flight Mechanics Conference, p. 0017 (2016)

  • Hussein, A.A., Canfield, R.A.: Unsteady aerodynamic stabilization of the dynamics of hingeless rotor blades in hover. AIAA J. 56(3), 1298–1303 (2017)

    Article  Google Scholar 

  • Hussein, A.A., Hajj, M.R., Elkholy, S.M., ELbayoumi, G.M.: Dynamic stability of hingeless rotor blade in hover using padé approximations. AIAA J. 14, 1769–1777 (2016)

  • Hussein, A.A., Hajj, M.R., Woolsey, C.: Stable, planar self propulsion using a hinged flap. IFAC-PapersOnLine 51(29), 395–399 (2018)

    Article  Google Scholar 

  • Kapitsa, P.L.: Pendulum with a vibrating suspension. Uspekhi Fiz. Nauk 44(1), 7–20 (1951)

    Article  Google Scholar 

  • Kapitsa, P.L.: Dynamical stability of a pendulum when its point of suspension vibrates. Collect. Pap. PL Kapitsa 2, 714–725 (1965)

    Google Scholar 

  • Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  • Khan, Z.A., Agrawal, S.K.: Control of longitudinal flight dynamics of a flapping wing micro air vehicle using time averaged model and differential flatness based controller, pp. 5284–5289. IEEE American Control Conference (2007)

  • Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C., Willmott, A.P.: A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201(4), 461–477 (1998)

    Google Scholar 

  • Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, Hoboken (1995)

    Book  MATH  Google Scholar 

  • Nelson, R.C.: Flight Stability and Automatic Control. McGraw-Hill, New York (1989)

    Google Scholar 

  • Nijmeijer, H., Van der Schaft, A.: Nonlinear Dynamical Control Systems, vol. 175. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  • Norberg, R.A.: Hovering flight of the dragonfly aeschna juncea l., kinematics and aerodynamics. In: Swimming and flying in nature, pp. 763–781. Springer (1975)

  • Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O.: Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions. J. Guid. Control Dyn. 34(1), 204–217 (2011)

    Article  Google Scholar 

  • Orlowski, C.T., Girard, A.R.: Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Prog. Aerosp. Sci. 51, 18–30 (2012)

    Article  Google Scholar 

  • Polhamus, E.C.: A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy. Technical Report NASA TN D-3767, Langely Research Center, Langely Station, Hampton, VA (1966)

  • Ramamurti, R., Sandberg, W.C.: A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205(10), 1507–1518 (2002)

    Google Scholar 

  • Rozhdestvensky, K.V., Ryzhov, V.A.: Aerohydrodynamics of flapping-wing propulsors. Prog. Aerosp. Sci. 39(8), 585–633 (2003)

    Article  Google Scholar 

  • Sanders, J.A., Verhulst, F., Murdock, J.A.: Averaging Methods in Nonlinear Dynamical Systems, vol. 59. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Sarychev, A.: Stability criteria for time-periodic systems via high-order averaging techniques. In: Nonlinear control in the year 2000 vol. 2, pp. 365–377. Springer (2001a)

  • Sarychev, A.V.: Lie-and chronologico-algebraic tools for studying stability of time-varying systems. Syst. Control Lett. 43(1), 59–76 (2001b)

    Article  MathSciNet  MATH  Google Scholar 

  • Schenato, L., Campolo, D., Sastry, S.S.: Controllability issues in flapping flight for biomemetic MAVs. volume 6, pp. 6441–6447. In: 42nd IEEE conference on Decision and Control (2003)

  • Schlichting, H., Truckenbrodt, E.: Aerodynamics of the Airplane. McGraw-Hill, New York (1979)

    Google Scholar 

  • Stanford, B., Beran, P., Patil, M.: Optimal flapping-wing vehicle dynamics via floquet multiplier sensitivities. J. Guid. Control Dyn. 36(2), 454–466 (2013)

    Article  Google Scholar 

  • Stephenson, A.: On induced stability. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(86), 233–236 (1908)

    Article  MATH  Google Scholar 

  • Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208(3), 447–459 (2005)

    Article  Google Scholar 

  • Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. 23(3), 231–246 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing MAVs: a review. Nonlinear Dyn. 70(2), 907–939 (2012)

    Article  MathSciNet  Google Scholar 

  • Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Aerodynamic-dynamic interaction and longitudinal stability of hovering MAVs/insects. In: 54th Structural Dynamics and Materials Conference Number AIAA 2013-1707, Boston (2013a)

  • Taha, H.E., Hajj, M.R., Beran, P.S.: Unsteady nonlinear aerodynamics of hovering MAVs/insects. AIAA-Paper 2013-0504 (2013b)

  • Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Wing kinematics optimization for hovering micro air vehicles using calculus of variation. J. Aircr. 50(2), 610–614 (2013c)

    Article  Google Scholar 

  • Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Saturation-based actuation for flapping mavs in hovering and forward flight. Nonlinear Dyn. 73(1), 1125–1138 (2013d)

    Article  MathSciNet  Google Scholar 

  • Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Effect of the aerodynamic-induced parametric excitation on the longitudinal stability of hovering mavs/insects. Nonlinear Dyn. 78(4), 2399–2408 (2014a)

    Article  Google Scholar 

  • Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Longitudinal flight dynamics of hovering MAVs/insects. J. Guid. Control Dyn. 37(3), 970–979 (2014b)

    Article  Google Scholar 

  • Taha, H.E., Hajj, M.R., Beran, P.S.: State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci. Technol. 34, 1–11 (2014c)

    Article  Google Scholar 

  • Taha, H.E., Tahmasian, S., Woolsey, C.A., Nayfeh, A.H., Hajj, M.R.: The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspir. Biomim. 10(1), 016002 (2015)

    Article  Google Scholar 

  • Taha, H.E., Woolsey, C.A., Hajj, M.R.: Geometric control approach to longitudinal stability of flapping flight. J. Guid. Control Dyn. 39(2), 214–226 (2016)

    Article  Google Scholar 

  • Taha, H., Kiani, M., Navarro, J.: Experimental demonstration of the vibrational stabilization phenomenon in bio-inspired flying robots. IEEE Robot. Autom. Lett. 3(2), 643–647 (2018)

    Article  Google Scholar 

  • Tahmasian, S., Woolsey, C.A.: Flight control of biomimetic air vehicles using vibrational control and averaging. J. Nonlinear Sci. 27(4), 1193–1214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351–370 (2002)

    Article  Google Scholar 

  • Taylor, G.K., Thomas, A.L.R.: Dynamic flight stability in the desert locust. J. Theor. Biol. 206, 2803–2829 (2003)

    Google Scholar 

  • Taylor, G.K., Zbikowski, R.: Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. J. R. Soc. Interface 2(3), 197–221 (2005)

    Article  Google Scholar 

  • Thomas, A.L.R., Taylor, G.K.: Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol. 212(1), 399–424 (2001)

    Article  Google Scholar 

  • Vela, P.A.: Averaging and control of nonlinear systems. Ph.D. thesis, California Institute of Technology (2003)

  • Wang, Z.J.: Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323–341 (2000)

    Article  MATH  Google Scholar 

  • Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)

    Google Scholar 

  • Willmott, A.P., Ellington, C.P.: The mechanisms of flight in the hawkmoth Manduca sexta. I: kinematics of hovering and forward flight. J. Exp. Biol. 200(21), 2705–2722 (1997)

    Google Scholar 

  • Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. Autom. 24(2), 341–347 (2008)

    Article  Google Scholar 

  • Wu, J.H., Sun, M.: Floquet stability analysis of the longitudinal dynamics of two hovering model insects. J. R. Soc. Interface 9(74), 2033–2046 (2012)

    Article  Google Scholar 

  • Wu, J.H., Zhang, Y.L., Sun, M.: Hovering of model insects: simulation by coupling equations of motion with Navier–Stokes equations. J. Exp. Biol. 212(20), 3313–3329 (2009)

    Article  Google Scholar 

  • Xiong, Y., Sun, M.: Dynamic flight stability of a bumble bee in forward flight. Acta Mech. Sin. 24(3), 25–36 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation Grant CMMI-1709746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Hassan.

Additional information

Communicated by Paul Newton.

Appendices

Appendix

Derivation of the Five-DOF Equations of Motion

We use the principle of virtual power (Greenwood 2003), as explained in Sect. 2, to derive the five-DOF equations of motion (2) in detail. The various terms in Eq. (1) for the body and wing are given below.

1.1 Body

The linear velocity of the reference point of the body axis system (the body’s center of gravity) and the corresponding angular velocity are written as

$$\begin{aligned} {\varvec{v}}_{\mathrm{b}} = {\dot{x}} {\varvec{i}}_{\mathrm{I}} + {\dot{z}} {\varvec{k}}_{\mathrm{I}} \text{ and } {\varvec{\omega }}_{\mathrm{b}} = {{\dot{\theta }}} {\varvec{j}}_{\mathrm{b}} = {{\dot{\theta }}} {\varvec{j}}_{\mathrm{I}}, \end{aligned}$$

where \({\varvec{i}}\), \({\varvec{j}}\), and \({\varvec{k}}\) are unit vectors along the x, y, and z directions in the axis system indicated by the subscript. Thus, one obtains

$$\begin{aligned} \frac{\partial {\varvec{v}}_{\mathrm{b}}}{\partial {\dot{x}}}&= {\varvec{i}}_{\mathrm{I}} ~~ \frac{\partial {\varvec{v}}_{\mathrm{b}}}{\partial {\dot{z}}} = {\varvec{k}}_{\mathrm{I}} ~~ \frac{\partial {\varvec{v}}_{\mathrm{b}}}{\partial {{\dot{\theta }}}} = {\varvec{0}} ~~ \frac{\partial {\varvec{v}}_{\mathrm{b}}}{\partial {{\dot{\varphi }}}} = {\varvec{0}} ~~ \frac{\partial {\varvec{v}}_{\mathrm{b}}}{\partial {{\dot{\eta }}}} = {\varvec{0}} \\ \frac{\partial {\varvec{\omega }}_{\mathrm{b}}}{\partial {\dot{x}}}&= {\varvec{0}} ~~ \frac{\partial {\varvec{\omega }}_{\mathrm{b}}}{\partial {\dot{z}}} = {\varvec{0}} ~~ \frac{\partial {\varvec{\omega }}_{\mathrm{b}}}{\partial {{\dot{\theta }}}} = {\varvec{j}}_{\mathrm{I}} ~~ \frac{\partial {\varvec{\omega }}_{\mathrm{b}}}{\partial {{\dot{\varphi }}}} = {\varvec{0}} ~~ \frac{\partial {\varvec{\omega }}_{\mathrm{b}}}{\partial {{\dot{\eta }}}} = {\varvec{0}} , \end{aligned}$$

and

$$\begin{aligned} \dot{{\varvec{v}}}_{\mathrm{b}}=\ddot{x} {\varvec{i}}_{\mathrm{I}} + \ddot{z} {\varvec{k}}_{\mathrm{I}}. \end{aligned}$$

The angular momentum vector of the body about its center of gravity and its inertial derivative are given by

$$\begin{aligned} {\varvec{h}}_{\mathrm{b}}=I_{yb}{{\dot{\theta }}} {\varvec{j}}_{\mathrm{I}}, \quad \dot{{\varvec{h}}}_{\mathrm{b}}=I_{yb}\ddot{\theta }{\varvec{j}}_{\mathrm{I}}. \end{aligned}$$

The aerodynamic contribution of the body is neglected, and hence, the body exhibits gravitational forces only with no moments. Thus, the body force in the inertial frame is written as

$$\begin{aligned} {\varvec{f}}_{\mathrm{b}}^{(\mathrm{I})}= [0,\;\; 0,\;\; m_{\mathrm{b}} g]^*. \end{aligned}$$

1.2 Wing

The linear velocity of the reference point of the wing frame (the hinge root) and its angular velocity are written as

$$\begin{aligned} {\varvec{v}}_{\mathrm{w}} = ({\dot{x}}-x_{\mathrm{h}}{{\dot{\theta }}}\sin \theta ) {\varvec{i}}_{\mathrm{I}} + ({\dot{z}}-x_{\mathrm{h}} {{\dot{\theta }}}\cos \theta ) {\varvec{k}}_{\mathrm{I}}, {\varvec{\omega }}_{\mathrm{w}} = {{\dot{\theta }}} {\varvec{j}}_{\mathrm{b}}-{{\dot{\varphi }}} {\varvec{k}}_{\mathrm{s}}+{{\dot{\eta }}}{\varvec{j}}_{\mathrm{w}}. \end{aligned}$$

Thus, one obtains

$$\begin{aligned} \frac{\partial {\varvec{v}}_{\mathrm{w}}}{\partial {\dot{x}}}&= {\varvec{i}}_{\mathrm{I}} ~&\frac{\partial {\varvec{v}}_{\mathrm{w}}}{\partial {\dot{z}}}&= {\varvec{k}}_{\mathrm{I}} ~&\frac{\partial {\varvec{v}}_{\mathrm{w}}}{\partial {{\dot{\theta }}}}&= -x_{\mathrm{h}}(\sin \theta {\varvec{i}}_{\mathrm{I}}+\cos \theta {\varvec{k}}_{\mathrm{I}}) ~&\frac{\partial {\varvec{v}}_{\mathrm{w}}}{\partial {{\dot{\varphi }}}}&= {\varvec{0}} ~&\frac{\partial {\varvec{v}}_{\mathrm{w}}}{\partial {{\dot{\eta }}}}&= {\varvec{0}} ~ \nonumber \\ \frac{\partial {\varvec{\omega }}_{\mathrm{w}}}{\partial {\dot{x}}}&= {\varvec{0}} ~&\frac{\partial {\varvec{\omega }}_{\mathrm{w}}}{\partial {\dot{z}}}&= {\varvec{0}} ~&\frac{\partial {\varvec{\omega }}_{\mathrm{w}}}{\partial {{\dot{\theta }}}}&= {\varvec{j}}_{\mathrm{I}} ~&\frac{\partial {\varvec{\omega }}_{\mathrm{w}}}{\partial {{\dot{\varphi }}}}&= -{\varvec{k}}_{\mathrm{b}} ~&\frac{\partial {\varvec{\omega }}_{\mathrm{w}}}{\partial {{\dot{\eta }}}}&= -{\varvec{j}}_{\mathrm{w}} , \end{aligned}$$

and

$$\begin{aligned} \dot{{\varvec{v}}}_{\mathrm{w}}=[\ddot{x}-x_{\mathrm{h}}\ddot{\theta }\sin \theta -x_{\mathrm{h}}{{\dot{\theta }}}^2\cos \theta ] {\varvec{i}}_{\mathrm{I}} + [\ddot{z} -x_{\mathrm{h}}\ddot{\theta }\cos \theta +x_{\mathrm{h}}{{\dot{\theta }}}^2\sin \theta ] {\varvec{k}}_{\mathrm{I}}. \end{aligned}$$

The rotation matrix from the inertial frame to the stroke plane frame is given by

$$\begin{aligned} {\varvec{R}}_\beta = \left[ \begin{array}{ccc} \cos \beta &{}\quad 0 &{}\quad -\sin \beta \\ 0 &{}\quad 1&{}\quad 0 \\ \sin \beta &{}\quad 0 &{}\quad \cos \beta \end{array} \right] , \end{aligned}$$

and rotation matrices from the stroke plane frame to the wing frame are

$$\begin{aligned} {\varvec{R}}_\varphi = \left[ \begin{array}{ccc} \cos \varphi &{}\quad -\sin \varphi &{}\quad 0 \\ \sin \varphi &{}\quad \cos \varphi &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 \end{array} \right] \;\;,\;\; {\varvec{R}}_\eta = \left[ \begin{array}{ccc} \cos \eta &{}\quad 0 &{}\quad -\sin \eta \\ 0 &{}\quad 1&{}\quad 0 \\ \sin \eta &{}\quad 0 &{}\quad \cos \eta \end{array} \right] , \end{aligned}$$

and

$$\begin{aligned} {\varvec{R}}_{\mathrm{ws}} = {\varvec{R}}_\eta {\varvec{R}}_\varphi . \end{aligned}$$

The wing angular velocity vector in the wing frame is

$$\begin{aligned} {\varvec{\omega }}_{\mathrm{w}}^{(\mathrm{w})} = \left( \begin{array}{c} \omega _1 \\ \omega _2 \\ \omega _3 \end{array} \right) = {\varvec{R}}_{\mathrm{ws}} \left( \begin{array}{c} 0 \\ {{\dot{\theta }}} \\ -{{\dot{\varphi }}} \end{array} \right) + \left( \begin{array}{c} 0 \\ {{\dot{\eta }}} \\ 0 \end{array} \right) = \left( \begin{array}{c} {{\dot{\varphi }}}\sin \eta - {{\dot{\theta }}}\cos \eta \sin \varphi \\ {{\dot{\theta }}}\cos \varphi +{{\dot{\eta }}} \\ -{{\dot{\varphi }}}\cos \eta -{{\dot{\theta }}}\sin \eta \sin \varphi \end{array} \right) . \end{aligned}$$

The position vector pointing from the hinge root to the wing center of gravity is \({{\varvec{\rho _c}}}_{\mathrm{w}}=-{\hat{d}}{\varvec{i}}_{\mathrm{w}} + r_{\mathrm{cg}} {\varvec{j}}_{\mathrm{w}}\) where \({\hat{d}}\) and \(r_{\mathrm{cg}}\) are the distances between the wing root hinge point and the wing center of gravity along the negative \(x_{\mathrm{w}}\)-axis and the \(y_{\mathrm{w}}\)-axis, respectively. Thus, the inertial acceleration is obtained as

$$\begin{aligned} {\ddot{{\varvec{\rho _c}}}}_{\mathrm{w}}^{(\mathrm{w})}= \left( \begin{array}{c} \ddot{\rho }_1 \\ \ddot{\rho }_2 \\ \ddot{\rho }_3 \end{array} \right) = \left( \begin{array}{c} {\hat{d}}(\omega _2^2+\omega _3^2) - r_{\mathrm{cg}}({{\dot{\omega }}}_3-\omega _1\omega _2) \\ -{\hat{d}}({{\dot{\omega }}}_3+\omega _1\omega _2) - r_{\mathrm{cg}}(\omega _1^2+\omega _3^2) \\ {\hat{d}}({{\dot{\omega }}}_2-\omega _1\omega _3) + r_{\mathrm{cg}}({{\dot{\omega }}}_1+\omega _2\omega _3) \end{array} \right) . \end{aligned}$$

Assuming the wing reference frame is fixed in the wing principal axes, the inertial time derivative of the angular momentum vector represented in the wing frame is written as

$$\begin{aligned} \dot{{\varvec{h}}}_{\mathrm{w}}^{(\mathrm{w})}= \left( \begin{array}{c} \dot{h}_1 \\ \dot{h}_2 \\ \dot{h}_3 \end{array} \right) = \left( \begin{array}{c} I_x {{\dot{\omega }}}_1 +(I_z-I_y)\omega _2\omega _3\\ I_y {{\dot{\omega }}}_y +(I_x-I_z)\omega _1\omega _3 \\ I_z {{\dot{\omega }}}_3 +(I_y-I_x)\omega _1\omega _2 \end{array} \right) . \end{aligned}$$

The wing is subject to aerodynamic and gravitational forces. Noting that the \(y_b\)-components of the aerodynamic force on each wing are equal and opposite, the force vector applied on the wing is written as

$$\begin{aligned} {\varvec{f}}_{\mathrm{w}}=\left( \begin{array}{c} F_x \\ 0 \\ F_z \end{array} \right) ^{(\mathrm{w})} + \left( \begin{array}{c} 0 \\ 0 \\ m_{\mathrm{w}} g \end{array} \right) ^{(\mathrm{I})}, \end{aligned}$$

where \(F_x\) and \(F_z\) are the aerodynamic loads along the \(x_{\mathrm{w}}\) and \(z_{\mathrm{w}}\) directions, respectively. The moment vector comprises three contributions: aerodynamic, gravitational, and the control torque. The aerodynamic contribution \({\varvec{M}}_{\mathrm{a}_{\mathrm{w}}}\) is determined by integrating the radial distributions of the forces \(F_x\) and \(F_z\) over the wing. That is, \({\varvec{M}}_{\mathrm{a}_{\mathrm{w}}}=M_x {\varvec{i}}_{\mathrm{w}}+M_y {\varvec{j}}_{\mathrm{w}}+M_z {\varvec{k}}_{\mathrm{w}}\), where

$$\begin{aligned} M_x=2\int _0^R F_z'(r) r \hbox {d}r, \;\; M_y=2\int _0^R F_z'(r) d_{\mathrm{ac}}(r) \hbox {d}r, \;\; \text{ and } \;\; M_z=-2\int _0^R F_x'(r) r \hbox {d}r, \end{aligned}$$

where \(F_x'(r)\) and \(F_z'(r)\) are the two-dimensional aerodynamic loads on an airfoil that is at distance r from the wing root and \(d_{\mathrm{ac}}(r)\) is the distance between the hinge line and the quarter chord line (aerodynamic center) at each airfoil section along \(x_{\mathrm{w}}\) direction. The gravitational contribution is written as \( {\varvec{M}}_{\mathrm{g}_{\mathrm{w}}}= (-{\hat{d}}{\varvec{i}}_{\mathrm{w}}+ r_{\mathrm{cg}}{\varvec{j}}_{\mathrm{w}}) \times m_{\mathrm{w}} g{\varvec{k_{\mathrm{I}}}}\). The last contribution (the control torque) is written as \({\varvec{M}}_{\mathrm{c}_{\mathrm{w}}}= -\tau _\varphi {\varvec{k}}_{\mathrm{s}}+\tau _\eta {\varvec{j}}_{\mathrm{w}}\), where \(\tau _\varphi \) and \(\tau _\eta \) are the actuating torque along the flapping and pitching directions, respectively.

Constructing all the required terms to apply the principle of virtual power (1), the five-DOF equations of motion are obtained as (with obvious correspondence to the abstract form (2))

$$\begin{aligned}&m_{\mathrm{w}} \biggl (\ddot{\rho _1} \left( \cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta }\right) +\ddot{\rho _3} \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) \nonumber \\&\qquad +\,\ddot{\rho _2} \cos {\beta } \sin {\varphi }- x_{\mathrm{h}} \ddot{\theta } \sin {\theta }-x_{\mathrm{h}} {\dot{\theta }}^2 \cos {\theta }\biggr ) + m_{\mathrm{v}} {\dot{u}} \nonumber \\&\quad =F_x \left( \cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta }\right) +F_z \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) \end{aligned}$$
(32)
$$\begin{aligned}&\qquad - m_{\mathrm{w}} \biggl (\ddot{\rho _1} \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) +\ddot{\rho _3}\left( \sin {\beta } \sin {\eta } \cos {\varphi }- \cos {\beta } \cos {\eta }\right) \nonumber \\&\qquad +\,\ddot{\rho _2} \sin {\beta } \sin {\varphi }+ x_{\mathrm{h}} \ddot{\theta } \cos {\theta }-x_{\mathrm{h}} {\dot{\theta }}^2 \sin {\theta }\biggr )+ m_{\mathrm{v}} ({\dot{w}}-g) \nonumber \\&\quad =-F_x \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) - F_z \left( \sin {\beta } \sin {\eta } \cos {\varphi }-\cos {\beta } \cos {\eta }\right) \nonumber \\ \end{aligned}$$
(33)
$$\begin{aligned}&m_{\mathrm{w}} \biggl [-x_{\mathrm{h}} \biggl (\ddot{\theta }~ {\hat{d}} \left( \cos {\beta } \cos {\eta } \cos {\theta } \cos {\varphi }+\sin {\beta } \cos {\eta } \sin {\theta } \cos {\varphi }-\sin {\beta } \sin {\eta } \cos {\theta } \right. \nonumber \\&\qquad \left. +\,\cos {\beta } \sin {\eta } \sin {\theta }\right) - \ddot{\theta }~ r_{\mathrm{cg}} \sin {\varphi }\cos (\beta -\theta )+ {\dot{\theta }}^2 \nonumber \\&\qquad \left( -r_{\mathrm{cg}} \sin {\varphi } \sin (\beta -\theta )+{\hat{d}} \cos {\eta } \cos {\varphi } \sin (\beta -\theta )+{\hat{d}} \sin {\eta } \cos (\beta -\theta )\right) \biggr )\nonumber \\&\qquad +\, {\dot{u}} \left( -\sin {\beta }~ r_{\mathrm{cg}} \sin {\varphi }+{\hat{d}} \sin {\beta } \cos {\eta } \cos {\varphi }+{\hat{d}} \cos {\beta } \sin {\eta }\right) \nonumber \\&\qquad +\, {\dot{w}} \left( -\cos {\beta }~ r_{\mathrm{cg}} \sin {\varphi }+{\hat{d}}\cos {\beta } \cos {\eta } \cos {\varphi }-{\hat{d}} \sin {\beta } \sin {\eta }\right) \biggr ]\nonumber \\&\qquad +\, I_{y_b} \ddot{\theta }+x_{\mathrm{h}} m_{\mathrm{w}} \biggl [\ddot{\rho _3} \sin {\beta } \sin {\eta } \cos {\theta } \cos {\varphi }+\ddot{\rho _1}\left( \cos {\eta } \cos {\varphi } \sin (\beta -\theta )\right. \nonumber \\&\qquad \left. +\,\sin {\eta } \cos (\beta -\theta )\right) - \ddot{\rho _3}\left( \cos {\beta } \sin {\eta } \sin {\theta } \cos {\varphi }\right. \nonumber \\&\qquad \left. -\, \cos {\beta } \cos {\eta } \cos {\theta }- \sin {\beta } \cos {\eta } \sin {\theta }\right) +\ddot{\rho _2} \sin {\varphi } \sin (\beta -\theta )+g \cos {\theta }\nonumber \\&\qquad +\, x_{\mathrm{h}} \ddot{\theta }-{\dot{u}} \sin {\theta } -{\dot{w}} \cos {\theta } \biggr ]-\dot{h_3} \sin {\eta } \sin {\varphi }-\dot{h_1} \cos {\eta } \sin {\varphi }+\dot{h_2} \cos {\varphi }\nonumber \\&\quad = \tau _{\eta } \cos {\varphi } - F_z~ x_{\mathrm{h}} \biggl (\sin {\beta } \left( \cos {\eta } \sin {\theta }-\sin {\eta } \cos {\theta } \cos {\varphi }\right) \nonumber \\&\qquad +\,\cos {\beta } (\sin {\eta } \sin {\theta } \cos {\varphi }+\cos {\eta } \cos {\theta })\biggr )\nonumber \\&\qquad +\, F_x x_{\mathrm{h}} (\cos {\eta } \cos {\varphi } \sin (\beta -\theta )+\sin {\eta } \cos (\beta -\theta )) \nonumber \\&\qquad -\,M_x \cos {\eta } \sin {\varphi }+M_y \cos {\varphi }-M_z \sin {\eta } \sin {\varphi } \end{aligned}$$
(34)
$$\begin{aligned}&r_{\mathrm{cg}}~ x_{\mathrm{h}}~ m_{\mathrm{w}} \cos {\varphi } \biggl (\ddot{\theta } \cos {\theta } \sin {\beta }- \ddot{\theta } \sin {\theta } \cos {\beta }-2 {\dot{\theta }}^2 \cos {\theta } \cos {\beta } -2~ {\dot{\theta }}^2 \sin {\theta } \sin {\beta }\biggr )\nonumber \\&\qquad +\, r_{\mathrm{cg}}~ m_{\mathrm{w}} \cos {\varphi } \biggl ({\dot{u}} \cos {\beta }+ u~ {\dot{\theta }} \sin {\beta }- {\dot{w}}~ \sin {\beta }+ w~ {\dot{\theta }} \cos {\beta } \biggr )\nonumber \\&\qquad +\, {\hat{d}}~x_{\mathrm{h}}~ m_{\mathrm{w}} \cos {\eta } \sin {\varphi } \biggl ( \ddot{\theta } \cos {\theta } \sin {\beta } - \ddot{\theta } \sin {\theta } \cos {\beta } -2~ {\dot{\theta }}^2 \cos {\theta } \cos {\beta } \nonumber \\&\qquad -\,2~ {\dot{\theta }}^2 \sin {\theta } \sin {\beta } \biggr ) + {\hat{d}}~m_{\mathrm{w}} \cos {\eta } \sin {\varphi } \biggl ( {\dot{u}} \cos {\beta } + u~ {\dot{\theta }} \sin {\beta } - {\dot{w}}~ \sin {\beta } \nonumber \\&\qquad +\, w~ {\dot{\theta }} \cos {\beta } \biggr ) +\dot{h_1} \sin {\eta }-\dot{h_3} \cos {\eta } = \tau _{\varphi } +M_x \sin {\eta }-M_z \cos {\eta } \end{aligned}$$
(35)
$$\begin{aligned}&{\hat{d}}~x_{\mathrm{h}}~ m_{\mathrm{w}} \biggl ( \ddot{\theta } \sin {\eta } \cos {\theta } \cos {\varphi } \sin {\beta }- \ddot{\theta } \sin {\eta } \sin {\theta } \cos {\varphi } \cos {\beta } - \ddot{\theta } \cos {\eta } \cos {\theta } \cos {\beta }\nonumber \\&\qquad -\, \ddot{\theta } \cos {\eta } \sin {\theta }\sin {\beta }- 2~ {\dot{\theta }}^2 \sin {\eta } \cos {\theta } \cos {\varphi } \cos {\beta }-2~ {\dot{\theta }}^2 \sin {\eta } \sin {\theta } \cos {\varphi } \sin {\beta } \nonumber \\&\qquad -\,2~ {\dot{\theta }}^2 \cos {\eta } \cos {\theta } \sin {\beta } +2~ {\dot{\theta }}^2 \cos {\eta } \sin {\theta } \cos {\beta }\biggr )\nonumber \\&\qquad +\, {\hat{d}}~m_{\mathrm{w}} \biggl ( {\dot{u}}~ \sin {\eta } \cos {\varphi } \cos {\beta } + {\dot{u}}~ \cos {\eta } \sin {\beta } + u~ {\dot{\theta }} \sin {\eta } \cos {\varphi }\sin {\beta }\nonumber \\&\qquad -\, u~{\dot{\theta }} \cos {\eta } \cos {\beta }- \sin {\eta } \cos {\varphi } \sin {\beta }~ {\dot{w}}\nonumber \\&\qquad +\, {\dot{w}} \cos {\eta } \cos {\beta }+w~ {\dot{\theta }} \sin {\eta } \cos {\varphi } \cos {\beta }+ w~ {\dot{\theta }} \cos {\eta } \sin {\beta }\biggr )+\dot{h_2}=\tau _{\eta }+M_y, \nonumber \\ \end{aligned}$$
(36)

where \(m_{\mathrm{v}}=m_{\mathrm{b}}+m_{\mathrm{w}}\).

Aerodynamic Model

The aerodynamic derivatives in Eq. (7) are defined below

$$\begin{aligned} F_{x_0}= & {} \rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \sin {\eta }~ {\dot{\eta }} {\dot{\varphi }}\\ F_{z_0}= & {} -\frac{1}{2} \rho ~ C_{L_\alpha } I_{21} \sin {\eta }~ {\dot{\varphi }} \left| {\dot{\varphi }}\right| -\rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \cos {\eta }~ {\dot{\eta }} {\dot{\varphi }}\\ M_{x_0}= & {} -\frac{1}{2} \rho ~ C_{L_\alpha } I_{31} \sin {\eta }~ {\dot{\varphi }} \left| {\dot{\varphi }}\right| -\rho \pi \left( k I_{21}-\frac{1}{4} I_{22}\right) \cos {\eta }~{\dot{\eta }} {\dot{\varphi }} \\ M_{y_0}= & {} \frac{3}{4} \biggl (-\frac{1}{2} \rho ~ C_{L_\alpha } I_{22} \sin {\eta }~ {\dot{\varphi }} \left| {\dot{\varphi }}\right| -\rho \pi \left( k I_{12}-\frac{1}{4} I_{13}\right) \cos {\eta }~{\dot{\eta }} {\dot{\varphi }} \biggr )-k~F_{z_0}\\ M_{z_0}= & {} -\rho \pi \left( k I_{21}-\frac{1}{4} I_{22}\right) \sin {\eta }~ {\dot{\eta }} {\dot{\varphi }} \\ F_{x_u}= & {} \rho \pi \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) {\dot{\eta }}\\ F_{x_w}= & {} -\rho \pi \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \sin {\beta } \sin {\eta } \cos {\varphi }-\cos {\beta } \cos {\eta }\right) {\dot{\eta }}\\ F_{x_q}= & {} \rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \sin {\eta } \cos {\varphi }~ {\dot{\varphi }} -\rho \pi \biggl (x_{\mathrm{h}} \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \cos {\eta } \cos {(\beta -\theta )}\right. \\&\left. -\,\sin {\eta } \cos {\varphi } \sin {(\beta -\theta )}\right) + \cos {\eta } \sin {\varphi } \left( k I_{11}-\frac{1}{4}I_{12}\right) \biggr ) {\dot{\eta }} \\ F_{x_{nl}}= & {} \rho \pi \cos {\varphi }~ {\dot{\theta }} \left( k I_{01}-\frac{1}{4} I_{02}\right) \biggl ( u \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) \\&+\, w \left( \cos {\beta } \cos {\eta }-\sin {\beta } \sin {\eta } \cos {\varphi }\right) \biggr )\\&-\, \rho \pi \biggl (x_{\mathrm{h}} \cos {\varphi } \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \cos {\eta } \cos {(\beta -\theta )}-\sin {\eta } \cos {\varphi } \sin {(\beta -\theta )}\right) \\&+\,\cos {\eta } \sin {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) \biggr ) {\dot{\theta }}^2 \\ F_{z_u}= & {} -\frac{1}{2} \rho ~ C_{L_\alpha } I_{11} (2 \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }) \left| {\dot{\varphi }}\right| \\&-\,\rho \pi \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta }\right) ~{\dot{\eta }} \\ F_{z_w}= & {} \rho \pi \left( k I_{01}-\frac{1}{4} I_{02}\right) \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) ~{\dot{\eta }} \\&-\,\frac{1}{2} \rho ~ C_{L_\alpha } I_{11} \left( \cos {\beta } \cos {\eta }-2 \sin {\beta } \sin {\eta } \cos {\varphi }\right) \left| {\dot{\varphi }}\right| \\ F_{z_q}= & {} \frac{1}{2} \rho ~ C_{L_\alpha } I_{21} \cos {\eta } \sin {\varphi }~\left| {\dot{\varphi }}\right| +\\&+\, \rho ~ C_{L_\alpha } I_{11} \left| {\dot{\varphi }}\right| \biggl (x_{\mathrm{h}} \sin {\beta } \sin {\eta } \cos {\theta } \cos {\varphi }+\frac{1}{2} \cos {\beta } \left( 2 x_{\mathrm{h}} \sin {\eta } \sin {\theta } \cos {\varphi }\right. \\&\left. +\,x_{\mathrm{h}} \cos {\eta } \cos {\theta }\right) + \frac{1}{2} x_{\mathrm{h}} \sin {\beta } \cos {\eta } \sin {\theta }\biggr ) \\&+\, \rho \pi ~ x_{\mathrm{h}} \cos {\eta } \cos {\varphi } \sin (\beta -\theta ) \left( \frac{1}{4} I_{02}-k I_{01}\right) {\dot{\eta }}\\&+\,\rho \pi ~ x_{\mathrm{h}} \sin {\eta } \cos (\beta -\theta ) \left( \frac{1}{4} I_{02}-k I_{01}\right) {\dot{\eta }} - \rho \pi \sin {\eta } \sin {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) {\dot{\eta }}\\&-\, \rho \pi \cos {\eta } \cos {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) {\dot{\varphi }} \\ F_{z_{nl}}= & {} -\rho \pi ~\cos {\varphi }~ {\dot{\theta }} \left( k I_{01}-\frac{1}{4} I_{02}\right) \biggl ( u~ (\cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta })\\&+\, w~ (\sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta })\biggr )\\&+\, {\dot{\theta }}^2 \biggl (2 \pi \rho x_{\mathrm{h}} \cos {\varphi } \left( \frac{1}{4} I_{02}-k I_{01}\right) \left( \cos {\eta } \cos {\varphi } \sin (\beta -\theta )+\sin {\eta } \cos (\beta -\theta )\right) \\&-\, 2 \pi \rho \sin {\eta } \sin {\varphi } \cos {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) \biggr ) \\ M_{x_u}= & {} -\frac{1}{2} \rho ~ C_{L_\alpha } I_{21} \left( 2 \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) \left| {\dot{\varphi }}\right| \\&-\,\rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) (\cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta }) ~{\dot{\eta }} \\ M_{x_w}= & {} \rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) ~{\dot{\eta }}\\&-\,\frac{1}{2} \rho ~ C_{L_\alpha } I_{21} (\cos {\beta } \cos {\eta }-2 \sin {\beta } \sin {\eta } \cos {\varphi }) \left| {\dot{\varphi }}\right| \\ \end{aligned}$$
$$\begin{aligned} M_{x_q}= & {} \frac{1}{2} \rho ~ C_{L_\alpha } I_{31} \cos {\eta } \sin {\varphi }~\left| {\dot{\varphi }}\right| +\rho ~ C_{L_\alpha } I_{21} \left| {\dot{\varphi }}\right| \biggl (x_{\mathrm{h}} \sin {\beta } \sin {\eta } \cos {\theta } \cos {\varphi }\\&+\, \frac{1}{2} \cos {\beta } (2 x_{\mathrm{h}} \sin {\eta } \sin {\theta } \cos {\varphi }+x_{\mathrm{h}} \cos {\eta } \cos {\theta })+\frac{1}{2} x_{\mathrm{h}} \sin {\beta } \cos {\eta } \sin {\theta }\biggr )\\&+\,\rho \pi x_{\mathrm{h}} \left( \frac{1}{4} I_{12}-k I_{11}\right) {\dot{\eta }}~ \biggl ( \cos {\eta } \cos {\varphi } \sin (\beta -\theta ) + \sin {\eta } \cos (\beta -\theta ) \biggr ) \\&-\, \rho \pi ~ \left( k I_{21}-\frac{1}{4} I_{22}\right) \biggl ( \sin {\eta } \sin {\varphi } ~{\dot{\eta }} - \cos {\eta } \cos {\varphi }~{\dot{\varphi }} \biggr ) \\ M_{x_{nl}}= & {} -\rho \pi ~ \cos {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta }\right) ~ {\dot{\theta }}~u\\&+\, \rho \pi ~ \cos {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) ~{\dot{\theta }}~w\\&+\, {\dot{\theta }}^2 \biggl (2 \rho \pi x_{\mathrm{h}} \cos {\varphi } \left( \frac{1}{4} I_{12}-k I_{11}\right) \left( \cos {\eta } \cos {\varphi } \sin (\beta -\theta )+\sin {\eta } \cos (\beta -\theta )\right) \\&-\, 2 \rho \pi \sin {\eta } \sin {\varphi } \cos {\varphi } \left( k I_{21}-\frac{1}{4} I_{22}\right) \biggr ) \\ M_{y_u}= & {} \frac{3}{4} \biggl (-\frac{1}{2} \rho ~ C_{L_\alpha } I_{12} (2 \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }) \left| {\dot{\varphi }}\right| \\&-\,\rho \pi \left( k I_{02}-\frac{1}{4} I_{03}\right) (\cos {\beta } \cos {\eta } \cos {\varphi }-\sin {\beta } \sin {\eta })~{\dot{\eta }}\biggr )- k~F_{z_u} \\ M_{y_w}= & {} \frac{3}{4} \biggl (\rho \pi \left( k I_{02}-\frac{1}{4} I_{03}\right) \left( \sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }\right) ~{\dot{\eta }} \\&-\,\frac{1}{2} \rho ~ C_{L_\alpha } I_{12} \left( \cos {\beta } \cos {\eta }-2 \sin {\beta } \sin {\eta } \cos {\varphi }\right) \left| {\dot{\varphi }}\right| \biggr )- k~F_{z_w} \\ \end{aligned}$$
$$\begin{aligned} M_{y_q}= & {} \frac{3}{4} \biggl (\frac{1}{2} \rho ~ C_{L_\alpha } I_{22} \cos {\eta } \sin {\varphi } \left| {\dot{\varphi }}\right| +\rho ~ C_{L_\alpha } I_{12} \left| {\dot{\varphi }}\right| \biggl [x_{\mathrm{h}} \sin {\beta } \sin {\eta } \cos {\theta } \cos {\varphi }\\&+\, \frac{1}{2} \cos {\beta } \left( 2 x_{\mathrm{h}} \sin {\eta } \sin {\theta } \cos {\varphi }+x_{\mathrm{h}} \cos {\eta } \cos {\theta }\right) +\frac{1}{2} x_{\mathrm{h}} \sin {\beta } \cos {\eta } \sin {\theta }\biggr ]\\&+\, \rho \pi x_{\mathrm{h}} \cos {\eta } \cos {\varphi } \sin (\beta -\theta ) \left( \frac{1}{4} I_{03}-k I_{02}\right) {\dot{\eta }}\\&+\,\rho \pi x_{\mathrm{h}} \sin {\eta } \cos (\beta -\theta ) \left( \frac{1}{4} I_{03}-k I_{02}\right) {\dot{\eta }}\\&-\, \rho \pi \sin {\eta } \sin {\varphi } \left( k I_{12}-\frac{1}{4} I_{13}\right) {\dot{\eta }}-\rho \pi \cos {\eta } \cos {\varphi } \left( k I_{12}-\frac{1}{4} I_{13}\right) {\dot{\varphi }} \biggr )-k~F_{z_q} \\ M_{y_{nl}}= & {} \frac{3}{4} \biggl (-\rho \pi \left( k I_{02}-\frac{1}{4} I_{03}\right) \cos {\varphi }~ {\dot{\theta }} \biggl [ u~ (\cos {\beta } \cos {\eta } \cos {\varphi }\\&\qquad -\,\sin {\beta } \sin {\eta })- w~ (\sin {\beta } \cos {\eta } \cos {\varphi }+\cos {\beta } \sin {\eta }) \biggr ]\\&+\, {\dot{\theta }}^2 \biggl [2 \rho \pi x_{\mathrm{h}} \left( \frac{1}{4} I_{03}-k I_{02}\right) \cos {\varphi }~ (\cos {\eta } \cos {\varphi } \sin (\beta -\theta )+\sin {\eta } \cos (\beta -\theta ))\\&-\, 2 \rho \pi \left( k I_{12}-\frac{1}{4} I_{13}\right) \sin {\eta } \sin {\varphi } \cos {\varphi }\biggr ]\biggr )-k~F_{z_{nl}} \\ M_{z_u}= & {} - \rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) {\dot{\eta }} \\ M_{z_w}= & {} \rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \sin {\beta } \sin {\eta } \cos {\varphi }-\cos {\beta } \cos {\eta }\right) {\dot{\eta }} \\ M_{z_q}= & {} \rho \pi \biggl (x_{\mathrm{h}} \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \cos {\eta } \cos {(\beta -\theta )}-\sin {\eta } \cos {\varphi } \sin {(\beta -\theta )}\right) \\&+\,\cos {\eta } \sin {\varphi } \left( k I_{21}-\frac{1}{4} I_{22}\right) \biggr )~ {\dot{\eta }} - \rho \pi \left( k I_{21}-\frac{1}{4}I_{22}\right) \sin {\eta } \cos {\varphi }~ {\dot{\varphi }} \\ M_{z_{nl}}= & {} -\rho \pi \left( k I_{11}-\frac{1}{4} I_{12}\right) \cos {\varphi }~{\dot{\theta }} \biggl ( u \left( \cos {\beta } \sin {\eta } \cos {\varphi }+\sin {\beta } \cos {\eta }\right) \\&+\, w \left( \cos {\beta } \cos {\eta }-\sin {\beta } \sin {\eta } \cos {\varphi }\right) \biggr )\\&+\, \rho \pi ~ {\dot{\theta }}^2 \biggl (x_{\mathrm{h}} \cos {\varphi } \left( k I_{11}-\frac{1}{4} I_{12}\right) \left( \cos {\eta } \cos {(\beta -\theta )}\right. \\&\left. -\,\sin {\eta } \cos {\varphi } \sin {(\beta -\theta )}\right) +\cos {\eta } \sin {\varphi } \left( k I_{21}-\frac{1}{4} I_{22}\right) \biggr ), \\ \end{aligned}$$

where \(k=c_r (1-x_{or})\), \(c_r\) is the wing root chord, \(x_{or}\) is the position of the hinge point along \(x_w\) normalized by the root chord, and \(x_{\mathrm{h}}\) is the distance from the vehicle center of mass to the root of the wing hinge line (i.e., the intersection of the hinge line with the \(x_b\)-axis). Also, \(\rho \) is the air density, \(C_{L_\alpha }\) is the three-dimensional lift curve slope of the wing, c(r) is the spanwise chord distribution, R is the wing radius, and \(I_{mn}=2\int _0^R {r^m c^n(r) \,\hbox {d}r}\).

The Linearized Dynamics of the Averaged Three-DOF System

The linearized averaged version of the three-DOF system (8) at the trim condition can be written abstractly as

(37)

where the elements of the matrix \({\varvec{A}}\) can be written as (some elements have quite lengthy expressions, and hence, we only write their limits as the wing mass goes to zero):

$$\begin{aligned} \lim _{m_{\mathrm{w}}\rightarrow 0} A_{42}=\,&0 \\ \lim _{m_{\mathrm{w}}\rightarrow 0} A_{43}=\,&\frac{0.25 A I_{21} \rho U_1^2 \sin ^2{\alpha _m}+0.74 C_{L_\alpha } I_{21} \rho U_2^2 \sin ^2{\alpha _m}}{I_F^2 m_{\mathrm{v}} \omega ^2}\\&-\,\frac{98.86 C_{L_\alpha } I_{21} \rho U_2 \sin ^2{\alpha _m}}{I_F m_{\mathrm{v}} \omega }+\frac{3307 C_{L_\alpha } I_{21} \rho \sin ^2{\alpha _m}}{m_{\mathrm{v}}}\\ A_{44}=&\frac{1}{I_F I_{y_b} m_{\mathrm{v}} \omega } C_{L_\alpha } \rho \cos {\alpha _m} \biggl (\cos {\alpha _m} \biggl (I_{11} ({\bar{c}} {\hat{d}} k m_{\mathrm{w}} (0.98 U_2\\&-41.88 I_F \omega )+I_{y_b} (0.5 U_2-78.37 I_F \omega ))\\&+\, m_{\mathrm{w}} \left( {\bar{c}} {\hat{d}} I_{12} (31.4 I_F \omega -0.74 U_2)+I_{21} r_{\mathrm{cg}} (2.4 I_F \omega -0.02 U_2)\right) \\&+\, {\bar{c}} {\hat{d}} I_{21} m_{\mathrm{w}} \cos {\alpha _m} (0.12 U_2-19.27 I_F \omega )\biggr )\\&+\, m_{\mathrm{w}} r_{\mathrm{cg}} \left( 5.23 I_{11} I_F k \omega -0.12 I_{11} k U_2-3.92 I_{12} I_F \omega +0.09 I_{12} U_2\right) \biggr )\\ \lim _{m_{\mathrm{w}}\rightarrow 0}A_{45}=&\frac{C_{L_\alpha } I_{21} \rho U_2 \sin {\alpha _m} \cos {\alpha _m}}{I_F m_{\mathrm{v}} \omega }-\frac{42.5 C_{L_\alpha } I_{21} \rho \sin {\alpha _m} \cos {\alpha _m}}{m_{\mathrm{v}}}\\ \lim _{m_{\mathrm{w}}\rightarrow 0} A_{46}=&\frac{1}{I_F m_{\mathrm{v}} \omega } \biggl ( I_{11} k \rho (1.56 U_2-66.29 I_F \omega )+I_{12} \rho (16.57 I_F \omega -0.39 U_2)\biggr )\\ A_{52}=&\frac{1}{I_F^3 I_{y_b} \omega ^2} C_{L_\alpha } I_{y_{\mathrm{w}}} \rho \sin {\alpha _m} \sin {2 \alpha _m} \biggl (I_{21} k \left( -3230 I_F^2 \omega ^2\right. \\&\left. +\,96.6 I_F U_2 \omega -0.24 U_1^2-0.73 U_2^2\right) \\&+\, I_{22} \left( 2422 I_F^2 \omega ^2-72.43 I_F U_2 \omega +0.18 U_1^2+0.55 U_2^2\right) \\&+\, I_{31} \cos {\alpha _m} \left( -222 I_F^2 \omega ^2+10.5 I_F U_2 \omega -0.06 U_1^2-0.18 U_2^2\right) \biggr )\\ \lim _{m_{\mathrm{w}}\rightarrow 0} A_{53}=&0\\ A_{54}=&\frac{1}{I_F^2 I_{y_b} \omega } C_{L_\alpha } \rho \cos {\alpha _m} \biggl (I_{y_{\mathrm{w}}} \sin {2 \alpha _m} \biggl (-2.6 I_{11} I_F k \omega +\,0.06 I_{11} k U_2+1.96 I_{12} I_F \omega \\&{-}\,0.05 I_{12} U_2{+}\, I_{21} \cos {\alpha _m} (0.01 U_2-1.2 I_F \omega )\biggr ){+}I_{21} I_{y_b} \sin {\alpha _m} (U_2-42.5 I_F \omega )\biggr )\\ \end{aligned}$$
$$\begin{aligned} A_{55}=&\frac{1}{I_F^2 I_{y_b} \omega } C_{L_\alpha } \rho \sin {\alpha _m} \biggl (I_{y_{\mathrm{w}}} \sin {2 \alpha _m} \biggl (-12.25 I_{21} I_F k \omega \\&+\,0.12 I_{21} k U_2+9.19 I_{22} I_F \omega -0.09 I_{22} U_2\\&+\, I_{31} \cos {\alpha _m} (0.02 U_2-0.65 I_F \omega )\biggr )-I_{21} I_F I_{y_b} \omega \sin {\alpha _m}\biggr )\\ A_{56}=&\frac{1}{I_F^2 I_{y_b} \omega } \rho \sin {\alpha _m} \cos {\alpha _m} \biggl (C_{L_\alpha } I_{y_{\mathrm{w}}} \cos {\alpha _m} \left( 0.65 I_{21} I_F k \omega \right. \\&\left. -\,0.02 I_{21} k U_2-0.49 I_{22} I_F \omega +0.01 I_{22} U_2\right) \\&+\, C_{L_\alpha } I_{31} \left( 5.27 I_F I_{y_b} \omega +0.15 I_F I_{y_{\mathrm{w}}} \omega -0.12 I_{y_b} U_2-0.001 I_{y_{\mathrm{w}}} U_2\right) \\&+\, C_{L_\alpha } I_{31} I_{y_{\mathrm{w}}} \cos { 2 \alpha _m} (0.15 I_F \omega -0.001 U_2)\\&+\, I_{y_{\mathrm{w}}} \sin {\alpha _m} \biggl (k (-30 I_{11} I_F k \omega +0.19 I_{11} k U_2\\&+\, 30 I_{12} I_F \omega -0.19 I_{12} U_2)+I_{13} (0.04 U_2-5.6 I_F \omega )\biggr )\\&+\, I_{y_{\mathrm{w}}} (-2 I_{21} I_F k \omega +0.05 I_{21} k U_2+0.5 I_{22} I_F \omega -0.01 I_{22} U_2)\biggr )\\ A_{62}=&\frac{1}{I_F^2 I_{y_b} \omega ^2}C_{L_\alpha } \rho \sin {\alpha _m} \biggl (I_{21} k \left( -826 I_F^2 \omega ^2+24.7 I_F U_2 \omega -0.06 U_1^2-0.19 U_2^2\right) \\&+\,I_{22} \left( 619.6 I_F^2 \omega ^2-18.5 I_F U_2 \omega +0.05 U_1^2+0.14 U_2^2\right) \\&+\, I_{31} \cos {\alpha _m} \left( 1795 I_F^2 \omega ^2-84.4 I_F U_2 \omega +0.5 U_1^2+1.49 U_2^2\right) \biggr )\\ A_{63}=&\frac{1}{I_F^2 I_{y_b} m_{\mathrm{v}} \omega ^2}C_{L_\alpha } m_{\mathrm{w}} \rho \cos {\alpha _m} \biggl (\cos {\alpha _m} \biggl ({\bar{c}} {\hat{d}} \biggl (I_{11} k \left( -5.23 I_F U_2 \omega \right. \\&\left. +\,0.06 U_1^2+0.18 U_2^2\right) +\, I_{12} \left( 3.9 I_F U_2 \omega -0.05 U_1^2-0.14 U_2^2\right) \biggr )\\&+\,{\bar{c}} {\hat{d}}I_{21} \cos {\alpha _m} \left( U_2 (0.02 U_2-2.4 I_F \omega )+0.01 U_1^2\right) \\&+\,I_{21} r_{\mathrm{cg}} \left( U_2 (0.18 U_2-19.27 I_F \omega )+0.06 U_1^2\right) \biggr )\\&+\,r_{\mathrm{cg}} \biggl (I_{11} k \left( U_2 (1.48 U_2-41.88 I_F \omega )+0.49 U_1^2\right) \\&+\,I_{12} \left( U_2 (31.4 I_F \omega -1.1 U_2)-0.37 U_1^2\right) \biggr )\biggr )\\ \end{aligned}$$
$$\begin{aligned} A_{64}=&\frac{1}{I_F I_{y_b} \omega }C_{L_\alpha } \rho \cos {\alpha _m} \biggl (42.2 I_{11} I_F k \omega - I_{11} k U_2-31.7 I_{12} I_F \omega \\&+\,0.74 I_{12} U_2+I_{21} \cos {\alpha _m} (19.4 I_F \omega -0.12 U_2)\biggr )\\ A_{65}=&\frac{1}{I_F I_{y_b} \omega }C_{L_\alpha } \rho \sin {\alpha _m} \biggl (198 I_{21} I_F k \omega -2 I_{21} k U_2-148 I_{22} I_F \omega \\&+\,1.5 I_{22} U_2+I_{31} \cos {\alpha _m} (10.5 I_F \omega -0.25 U_2)\biggr ) \\ A_{66}=&\frac{\rho }{I_F I_{y_b} \omega } \biggl (C_{L_\alpha } \cos {\alpha _m} \left( -5.23 I_{21} I_F k \omega +0.12 I_{21} k U_2+3.9 I_{22} I_F \omega -0.09 I_{22} U_2\right) \\&+\, C_{L_\alpha } I_{31} \cos { 2 \alpha _m} (0.01 U_2-1.2 I_F \omega )-1.2 C_{L_\alpha } I_{31} I_F \omega +0.01 C_{L_\alpha } I_{31} U_2\\&+\, \sin {\alpha _m} \biggl (k (242 I_{11} I_F k \omega -1.5 I_{11} k U_2-242 I_{12} I_F \omega \\&+\,1.5 I_{12} U_2)+I_{13} (45.5 I_F \omega -0.29 U_2)\biggr )\\&+\, 16.43 I_{21} I_F k \omega -0.39 I_{21} k U_2-4.1 I_{22} I_F \omega +0.1 I_{22} U_2\biggr ). \end{aligned}$$

Hawkmoth Morphological Parameters

The morphological parameters and the wing planform for the hawkmoth, as given in Sun et al. (2007) and Ellington (1984b), are

$$\begin{aligned} R= & {} 51.9\, \mathrm {mm}, \; S=947.8\, \mathrm {mm}^2,\; {\overline{c}}=18.3\,\mathrm {mm},\\ {\hat{r}}_1= & {} 0.44,\; {\hat{r}}_2=0.525,\; f=26.3\, {\mathrm{Hz}}, \; \Phi =60.5^\circ ,\\ \alpha _m= & {} 30^\circ ,\; m_b=1.648\,\mathrm {gm},\; \text{ and }\; I_{yb}=2080\,\mathrm {mg\,cm}^2, \end{aligned}$$

where R is the semi-span of the wing, S is the area of one wing, \({\overline{c}}\) is the mean chord, f is the flapping frequency, \(\Phi \) is the flapping angle amplitude, \(m_b\) is the mass of the body, and \(I_{yb}\) is the body moment of inertia around the body y-axis. The moments of the wing chord distribution \({\hat{r}}_1\) and \({\hat{r}}_2\) are defined as

$$\begin{aligned} I_{k1}=2\int _0^R {r^k c(r) \,\hbox {d}r}=2SR^k{\hat{r}}_k^k. \end{aligned}$$

As for the wing planform, the method of moments used by Ellington Ellington (1984b) is adopted here to obtain a chord distribution for the insect that matches the documented first two moments \({\hat{r}}_1\) and \({\hat{r}}_2\); that is,

$$\begin{aligned} c(r)=\frac{{\overline{c}}}{\beta } \left( \frac{r}{R}\right) ^{\lambda -1} \left( 1-\frac{r}{R}\right) ^{\gamma -1}, \end{aligned}$$

where

$$\begin{aligned}&\lambda ={\hat{r}}_1\left[ \frac{{\hat{r}}_1(1-{\hat{r}}_1)}{{\hat{r}}_2^2-{\hat{r}}_1^2}-1\right] \;,\; \gamma =(1-{\hat{r}}_1)\left[ \frac{{\hat{r}}_1(1-{\hat{r}}_1)}{{\hat{r}}_2^2-{\hat{r}}_1^2}-1\right] ,\\&\quad \text{ and }\;\; \beta =\int _0^1 {{\hat{r}}^{\lambda -1} (1-{\hat{r}})^{\gamma -1} \,d{\hat{r}}}. \end{aligned}$$

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. (2009) and is assumed uniform with an areal mass distribution \(m'\) The inertial properties of the wing are then estimated as

$$\begin{aligned}&I_x=2\int _0^R {m' r^2 c(r) \,\hbox {d}r} \;,\; I_y=2\int _0^R {m' {\hat{d}}^2 c^3(r) \,\hbox {d}r}\\&,I_z=I_x+I_y,~\text{ and }~ r_{\mathrm{cg}}=\frac{2\int _0^R {m' r c(r) \,\hbox {d}r}}{m_{\mathrm{w}}}=\frac{I_{11}}{2S}, \end{aligned}$$

where \({\hat{d}}\) is the chord-normalized distance from the wing hinge line to the center of gravity line.

Optimized Shooting Method

Periodic shooting methods have been used in the literature of FWMAVs/insects to capture the periodic orbits associated with different equilibrium configurations (e.g., hovering) (Dietl and Garcia 2008b; Wu and Sun 2012; Stanford et al. 2013; Hussein et al. 2018). The stability of these orbits are then analyzed using the Floquet theorem (Nayfeh and Balachandran 1995). Dednam and Botha (2015) provided an optimized shooting approach to capture a periodic solution of a nonlinear system. This optimized shooting approach adopts the Levenberg–Marquardt optimization algorithm to minimize the residual. This algorithm is based on two methods: the gradient descent method and the Gauss–Newton method. According to Gavin (2011), when the parameters are far from the optimal values, the Levenberg–Marquardt algorithm operates in a way similar to gradient descent. However, it operates similar to the Gauss–Newton method when approaching the optimal point.

Consider the following system of equations

$$\begin{aligned} \dot{{\varvec{x}}}(t)={\varvec{f}}({\varvec{x}}(t),{\varvec{\alpha }},t), \end{aligned}$$
(38)

where \({\varvec{x}}\)\(\in \)\(\mathbb {\mathbb {R}}^{n}\) and \({\varvec{f}}\)\(\mathbb {\mathbb {R}}^{n} \times \mathbb {\mathbb {R}}^{k} \times \mathbb {\mathbb {R}}_{\ge 0}\)\(\rightarrow \)\(\mathbb {\mathbb {R}}^{n}\), and \({\varvec{\alpha }}\) are the system parameters. This system corresponds to a non-autonomous vector field. Thus, a solution \({\varvec{x}}(t)\) to the system (38) is periodic if there exists a constant \(T>0\) such that

$$\begin{aligned} {\varvec{x}}(t)={\varvec{x}}(t+T). \end{aligned}$$
(39)

The optimized shooting method can be applied to any system that can be expressed in the form of (38), and, for convenience, a dimensionless time \(\tau \) is introduced such that \(t =\tau ~T\). Equation (38) is then written as

$$\begin{aligned} \frac{\hbox {d}{\varvec{x}}}{\hbox {d}\tau }=T{\varvec{f}}({{\varvec{x}}(\tau T),{\varvec{\alpha }},\tau T)}. \end{aligned}$$
(40)

Thus, this new variable \(\tau \) allows the simplification of the boundary conditions in Eq. (39) so that \(x(\tau = 0)= x(\tau = 1)\) and Eq. (40) can be integrated over one period (i.e., letting \(\tau \) run from zero to one). Now, the residual can be written as

$$\begin{aligned} {\mathbf {R}}=T \int _{0}^{1} {\varvec{f}}({\varvec{x}}(\tau T), {\varvec{\alpha }},\tau T)~\hbox {d}\tau . \end{aligned}$$
(41)

According to Dednam and Botha (2015), the residual depends on the number of quantities to be optimized and can be expressed as

$$\begin{aligned} {\mathbf {R}}=\biggl ({\varvec{x}}(1)-{\varvec{x}}(0),~{\varvec{x}}(1+\varDelta \tau )-{\varvec{x}}(\varDelta \tau ),\ldots ,~{\varvec{x}}(1+(p-1)\varDelta \tau )-{\varvec{x}}((p-1)\varDelta \tau )\biggr ), \end{aligned}$$
(42)

where \(\varDelta \tau \) is the integration step size and \(p \in {\mathbb {N}}\). For solvability, the natural number p is chosen so that the number pn of components of the residual is greater than or equal to the number of unknowns (initial point on the periodic orbit and any unknown parameters such as the period in autonomous systems).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.M., Taha, H.E. Differential-Geometric-Control Formulation of Flapping Flight Multi-body Dynamics. J Nonlinear Sci 29, 1379–1417 (2019). https://doi.org/10.1007/s00332-018-9520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9520-8

Keywords

Mathematics Subject Classification

Navigation