Skip to main content
Log in

A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We compute invariant Lagrangian tori of analytic Hamiltonian systems by the parameterization method. Under Kolmogorov’s non-degeneracy condition, we look for an invariant torus of the system carrying quasi-periodic motion with fixed frequencies. Our approach consists in replacing the invariance equation of the parameterization of the torus by three conditions which are altogether equivalent to invariance. We construct a quasi-Newton method by solving, approximately, the linearization of the functional equations defined by these three conditions around an approximate solution. Instead of dealing with the invariance error as a single source of error, we consider three different errors that take account of the Lagrangian character of the torus and the preservation of both energy and frequency. The condition of convergence reflects at which level contributes each of these errors to the total error of the parameterization. We do not require the system to be nearly integrable or to be written in action-angle variables. For nearly integrable Hamiltonians, the Lebesgue measure of the holes between invariant tori predicted by this parameterization result is of \({\mathcal {O}}(\varepsilon ^{1/2})\), where \(\varepsilon \) is the size of the perturbation. This estimate coincides with the one provided by the KAM theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that if \(a=a(\theta )\) is a scalar-valued or a vector-valued function, then \(L_\omega a =Da\,\omega \).

  2. We use that \(f(a+x)-f(a)-Df(a)x=\displaystyle \int _0^1\frac{d}{\hbox {d}s}[F(s)]\hbox {d}s=x^\top \left[ \int _0^1(1-s)D^2f(a+sx)\,\hbox {d}s\right] x\), where \(F(s)=f(a+sx)+(1-s)Df(a+sx)x\).

  3. We have used that \(f(a+x)-f(a)=\displaystyle \int _0^1\frac{d}{ds}[F(s)]\,ds=\left[ \int _0^1Df(a+sx)\,ds\right] x\), where \(F(s)=f(a+sx)\).

References

  • Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations. Russ. Math. Surv. 18(5), 9–36 (1963)

    Article  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method. Nuovo Cimento B (11) 79(2), 201–223 (1984)

    Article  MathSciNet  Google Scholar 

  • Broer, H.W., Sevryuk, M.B.: KAM theory: Quasi-periodicity in dynamical systems. In: Broer, H.W., Hasselblatt, B., Takens, F. (eds.) Handbook of Dynamical Systems, vol. 3C, pp. 249–344. Elsevier (2010)

  • Calleja, R., Celletti, A., de la Llave, R.: A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J. Diff. Equ. 255(5), 978–1049 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Calleja, R., de la Llave, R.: A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification. Nonlinearity 23(9), 2029–2058 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: On the stability of realistic three-body problems. Comm. Math. Phys. 186(2), 413–449 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave, R.: A tutorial on KAM theory. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math., pages 175–292. Amer. Math. Soc., Providence (2001)

  • de la Llave, R., González, A., Jorba, À., Villanueva, J.: KAM theory without action-angle variables. Nonlinearity 18(2), 855–895 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Fontich, E., de la Llave, R., Sire, Y.: Construction of invariant whiskered tori by a parameterization method. Part I: maps and flows in finite dimensions. J. Diff. Equ. 246, 3136–3213 (2009)

    Article  MATH  Google Scholar 

  • Gabern, F., Jorba, À., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18(4), 1705–1734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • González, A., de la Llave, R.: Analytic smoothing of geometric maps with applications to KAM theory. J. Diff. Equ. 245(5), 1243–1298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • González-Enríquez, A., Haro, A., de la Llave, R.: Singularity theory for non-twist KAM tori. Mem. Am. Math. Soc. 227(1067), vi+115 (2014)

    MathSciNet  MATH  Google Scholar 

  • Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.M.: The Parameterization Method for Invariant Manifolds, Volume 195 of Applied Mathematical Sciences. Springer [Cham], New York City (2016). (From rigorous results to effective computations). http://link.springer.com/content/pdf/bfm%3A978-3-319-29662-3%2F1.pdf

  • Huguet, G., de la Llave, R., Sire, Y.: Computation of whiskered invariant tori and their associated manifolds: new fast algorithms. Discrete Contin. Dyn. Syst. 32(4), 1309–1353 (2012)

    MathSciNet  MATH  Google Scholar 

  • Jorba, À., de la Llave, R., Zou, M.: Lindstedt series for lower-dimensional tori. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 151–167. Kluwer Acad. Publ., Dordrecht (1999)

  • Jorba, À., Villanueva, J.: On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems. Nonlinearity 10(4), 783–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorba, À., Villanueva, J.: On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. 7(5), 427–473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorba, À., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Phys. D 114(3–4), 197–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A.N.: On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98, 527–530 (1954). Translated in pp. 51–56 of Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Como 1977 (eds. G. Casati and J. Ford) Lect. Notes Phys. 93, Springer, Berlin (1979)

  • Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems. Celestial Mech. Dynam. Astronom 78(1–4), 47–74 (2001). (2000. New developments in the dynamics of planetary systems (Badhofgastein, 2000))

    MathSciNet  MATH  Google Scholar 

  • Luque, A., Villanueva, J.: A KAM theorem without action-angle variables for elliptic lower dimensional tori. Nonlinearity 24(4), 1033–1080 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Luque, A., Villanueva, J.: A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map. Phys. D 325, 63–73 (2016)

    Article  MathSciNet  Google Scholar 

  • Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962, 1–20 (1962)

    MathSciNet  MATH  Google Scholar 

  • Moser, J.: A rapidly convergent iteration method and non-linear differential equations. II. Ann. Scuola Norm. Sup. Pisa (3) 20, 499–535 (1966)

    MathSciNet  MATH  Google Scholar 

  • Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa (3) 20, 265–315 (1966)

    MathSciNet  MATH  Google Scholar 

  • Neĭshtadt, A.I.: Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions. J. Appl. Math. Mech. 45(6), 1016–1025 (1981)

    MathSciNet  Google Scholar 

  • Perry, A.D., Wiggins, S.: KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Phys. D 71(1–2), 102–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math. 35(5), 653–696 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel, J.: A lecture on the classical KAM theorem. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), vol. 69 of Proc. Sympos. Pure Math., pp. 707–732. Amer. Math. Soc., Providence (2001)

  • Rüssmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 598–624. Lecture Notes in Phys., Vol. 38. Springer, Berlin (1975)

  • Rüssmann, H.: On a new proof of Moser’s twist mapping theorem. In: Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I. Celestial Mech. 14(1):19–31 (1976)

  • Salamon, D.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J., 10:Paper 3, 37 pp. (electronic) (2004)

  • Salamon, D., Zehnder, E.: KAM theory in configuration space. Comment. Math. Helv. 64(1), 84–132 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Villanueva, J.: Kolmogorov theorem revisited. J. Diff. Equ. 244(9), 2251–2276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein, A.: Lectures on Symplectic Manifolds, Volume 29 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979)

    Google Scholar 

  • Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems. II. Comm. Pure Appl. Math. 29(1), 49–111 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their careful reading of the manuscript and valuable comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Villanueva.

Additional information

Communicated by Amadeu Delshams.

This work has been partially supported by the Spanish MINECO-FEDER Grant MTM2015-65715-P and the Catalan Grant 2014SGR504.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, J. A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems. J Nonlinear Sci 27, 495–530 (2017). https://doi.org/10.1007/s00332-016-9342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9342-5

Keywords

Mathematics Subject Classification

Navigation