Skip to main content
Log in

Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rüssmann’s non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus, numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang’s previous ones (1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V I. Mathematical Methods of Classical Mechanics, 2nd ed. New York: Springer, 1989

    Book  Google Scholar 

  2. Arnold V I, Kozlov V V, Neishtadt A I. Mathematical Aspects of Classical and Celestial Mechanics. New York: Springer, 2007

    MATH  Google Scholar 

  3. Benettin G, Giorgilli A. On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117–1143

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding Z, Shang Z. Exponential stability of symplectic integrators for integrable Hamiltonian systems. ArXiv:1805.03355, 2018

    Google Scholar 

  5. Ge Z, Marsden J E. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys Lett A, 1988, 133: 134–139

    Article  MathSciNet  MATH  Google Scholar 

  6. Graff S M. On the conservation of hyperbolic invariant tori for Hamiltonian systems. J Differential Equations, 1974, 15: 1–69

    Article  MathSciNet  MATH  Google Scholar 

  7. Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441–462

    Article  MathSciNet  MATH  Google Scholar 

  8. Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. Springer Series in Computational Mathematics, vol. 31. Berlin: Springer, 2006

    MATH  Google Scholar 

  9. Kuksin S, Pöschel J. On the inclusion of analytic symplectic maps in analytic Hamiltonian ows and its applications. In: Seminar on Dynamical Systems. Basel: Birkhäuser, 1994, 96–116

    Chapter  Google Scholar 

  10. Laskar J. Secular evolution of the solar system over 10 million years. Astron Astrophys, 1988, 198: 341–362

    Google Scholar 

  11. Laskar J. Introduction to frequency map analysis. In: Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series. Series C: Mathematical and Physical Sciences, vol. 533. Netherlands: Kluwer, 1999, 134–150

    Chapter  Google Scholar 

  12. Lu X, Li J, Xu J. A KAM theorem for a class of nearly integrable symplectic mappings. J Dynam Differential Equations, 2017, 29: 131–154

    Article  MathSciNet  MATH  Google Scholar 

  13. Moan P C. On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth. Nonlinearity, 2004, 17: 67–83

    Article  MathSciNet  MATH  Google Scholar 

  14. Moser J. On invariant curves of area-preserving mappings of an annulus. Matematika, 1962, 6: 51–68

    MATH  Google Scholar 

  15. Pöschel J. Integrability of Hamiltonian systems on Cantor sets. Comm Pure Appl Math, 1982, 35: 653–695

    Article  MathSciNet  MATH  Google Scholar 

  16. Pöschel J. On elliptic lower dimensional tori in Hamiltonian systems. Math Z, 1989, 202: 559–608

    Article  MathSciNet  MATH  Google Scholar 

  17. Rüssmann H. Nondegeneracy in the perturbation theory of integrable dynamical systems. In: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics. Mathematics and Its Applications, vol. 59. Dordrecht: Springer, 1990, 211–223

    Google Scholar 

  18. Rüssmann H. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul Chaotic Dyn, 2001, 6: 119–204

    Article  MathSciNet  MATH  Google Scholar 

  19. Sanz-Serna J M. Symplectic integrators for Hamiltonian problems: An overview. Acta Numer, 1992, 1: 243–286

    Article  MathSciNet  MATH  Google Scholar 

  20. Sanz-Serna J M, Vadillo F. Nonlinear instability, the dynamic approach. Pitman Res Notes Math Ser, 1986, 140: 187–199

    MathSciNet  MATH  Google Scholar 

  21. Sevryuk M B. KAM-stable Hamiltonians. J Dyn Control Syst, 1995, 1: 351–366

    Article  MathSciNet  MATH  Google Scholar 

  22. Sevryuk M B. The classical KAM theory at the dawn of the twenty-first century. Mosc Math J, 2003, 3: 1113–1144

    MathSciNet  MATH  Google Scholar 

  23. Shang Z. KAM theorem of symplectic algorithms for Hamiltonian systems. Numer Math, 1999, 83: 477–496

    Article  MathSciNet  MATH  Google Scholar 

  24. Shang Z. A note on the KAM theorem for symplectic mappings. J Dynam Differential Equations, 2000, 12: 357–383

    Article  MathSciNet  MATH  Google Scholar 

  25. Shang Z. Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity, 2000, 13: 299–308

    Article  MathSciNet  MATH  Google Scholar 

  26. Skeel R D, Srinivas K. Nonlinear stability analysis of area-preserving integrators. SIAM J Numer Anal, 2000, 38: 129–148

    Article  MathSciNet  MATH  Google Scholar 

  27. Stoffer D. On the qualitative behaviour of symplectic integrators, part II: Integrable systems. J Math Anal Appl, 1998, 217: 501–520

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang D. Some aspects of Hamiltonian systems and symplectic algorithms. Phys D, 1994, 73: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu J, You J, Qiu Q. Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math Z, 1997, 226: 375–387

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang R, Tang Y, Zhu B, et al. Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems. Sci China Math, 2016, 59: 379–396

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu W, Liu B, Liu Z. The hyperbolic invariant tori of symplectic mappings. Nonlinear Anal, 2008, 68: 109–126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11671392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaodong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Shang, Z. Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems. Sci. China Math. 61, 1567–1588 (2018). https://doi.org/10.1007/s11425-018-9311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9311-7

Keywords

MSC(2010)

Navigation