Skip to main content

Advertisement

Log in

SUVmax to tumor perimeter distance: a robust radiomics prognostic biomarker in resectable non-small cell lung cancer patients

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to evaluate the prognostic value of novel geometric variables obtained from pre-treatment [18F]FDG PET/CT with respect to classical ones in patients with non-small cell lung cancer (NSCLC).

Methods

Retrospective study including stage I–III NSCLC patients with baseline [18F]FDG PET/CT. Clinical, histopathologic, and metabolic parameters were obtained. After tumor segmentation, SUV and volume-based variables, global texture, sphericity, and two novel parameters, normalized SUVpeak to centroid distance (nSCD) and normalized SUVmax to perimeter distance (nSPD), were obtained. Early recurrence (ER) and short-term mortality (STM) were used as end points. Univariate logistic regression and multivariate logistic regression with respect to ER and STM were performed.

Results

A cohort of 173 patients was selected. ER was detected in 49/104 of patients with recurrent disease. Additionally, 100 patients died and 53 had STM. Age, pathologic lymphovascular invasion, lymph nodal infiltration, TNM stage, nSCD, and nSPD were associated with ER, although only age (aOR = 1.06, p = 0.002), pathologic lymphovascular invasion (aOR = 3.40, p = 0.022), and nSPD (aOR = 0.02, p = 0.018) were significant independent predictors of ER in multivariate analysis. Age, lymph nodal infiltration, TNM stage, nSCD, and nSPD were predictors of STM. Age (aOR = 1.05, p = 0.006), lymph nodal infiltration (aOR = 2.72, p = 0.005), and nSPD (aOR = 0.03, p = 0.022) were significantly associated with STM in multivariate analysis. Coefficient of variation (COV) and SUVmean/SUVmax ratio did not show significant predictive value with respect to ER or STM.

Conclusion

The geometric variables, nSCD and nSPD, are robust biomarkers of the poorest outcome prediction of patients with NSCLC with respect to classical PET variables.

Key Points

In NSCLC patients, it is crucial to find prognostic parameters since TNM system alone cannot explain the variation in lung cancer survival.

Age, lymphovascular invasion, lymph nodal infiltration, and metabolic geometrical parameters were useful as prognostic parameters.

The displacement grade of the highest point of metabolic activity towards the periphery assessed by geometric variables obtained from [18F]FDG PET/CT was a robust biomarker of the poorest outcome prediction of patients with NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ach:

Adjuvant chemotherapy

ADC:

Adenocarcinoma

aOR:

Adjusted odds ratio

CCI:

Charlson Comorbidity Index

COV:

Coefficient of variation

DFS:

Disease-free survival

ER:

Early recurrence

MTV:

Metabolic tumor volume

NSCLC:

Non-small cell lung carcinoma

OR:

Odds ratio

OS:

Overall survival

PORT:

Postoperative radiotherapy

SCC:

Squamous cell carcinoma

STM:

Short-term mortality

SUV:

Standardized uptake value

TLG:

Total lesion glycolysis

TNM:

Tumor node metastasis

VOI:

Volume of interest

References

  1. Barta JA, Powell CA, Wisnivesky JP (2019) Global epidemiology of lung cancer. Ann Glob Health 85:8. https://doi.org/10.5334/aogh.2419

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yoshino I, Yohena T, Kitajima M et al (2001) Survival of non-small cell lung cancer patients with postoperative recurrence at distant organs. Ann Thorac Cardiovasc Surg 7:204–209

    CAS  PubMed  Google Scholar 

  3. Sugimura H, Nichols FC, Yang P et al (2007) Survival after recurrent nonsmall-cell lung cancer after complete pulmonary resection. Ann Thorac Surg 83:409–418. https://doi.org/10.1016/j.athoracsur.2006.08.046

    Article  PubMed  Google Scholar 

  4. Anwar H, Vogl TJ, Abougabal MA et al (2018) The value of different [18F]FDG PET/CT baseline parameters in risk stratification of stage I surgical NSCLC patients. Ann Nucl Med 32:687–694. https://doi.org/10.1007/s12149-018-1301-9

    Article  PubMed  Google Scholar 

  5. Goldstraw P, Crowley J, Chansky K et al (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2:706–714. https://doi.org/10.1097/JTO.0b013e31812f3c1a

    Article  PubMed  Google Scholar 

  6. Ávila Martínez RJ (2018) Invasión de la pleura visceral como factor pronóstico del carcinoma brocogenético no células pequeñas. Doctoral thesis, Universidad Complutense de Madrid

    Google Scholar 

  7. Mizuno T, Arimura T, Kuroda H, Sakakura N, Yatabe Y, Sakao Y (2018) Current outcomes of postrecurrence survival in patients after resection of non-small cell lung cancer. J Thorac Dis 10:1788–1796. https://doi.org/10.21037/jtd.2018.01.148

  8. Choi PJ, Jeong SS, Yoon SS (2013) Prognosis of recurrence after complete resection in early-stage non-small cell lung cancer. The Korean Journal of Thoracic and Cardiovascular Surgery 46:449–456. https://doi.org/10.5090/kjtcs.2013.46.6.449

    Article  PubMed  PubMed Central  Google Scholar 

  9. Battafarano RJ, Piccirillo JF, Meyers BF et al (2002) Impact of comorbidity on survival after surgical resection in patients with stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 123:280–287. https://doi.org/10.1067/mtc.2002.119338

    Article  PubMed  Google Scholar 

  10. Bauml J, Mick R, Zhang Y et al (2013) Determinants of survival in advanced non-small-cell lung cancer in the era of targeted therapies. Clin Lung Cancer 14:581–591. https://doi.org/10.1016/j.cllc.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ettinger DS, Wood DE, Aisner DL et al (2017) Non–small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:504–535. https://doi.org/10.6004/jnccn.2017.0050

  12. Postmus PE, Kerr KM, Oudkerk M et al (2017) Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 28:iv1–iv21. https://doi.org/10.1093/annonc/mdx222

    Article  CAS  PubMed  Google Scholar 

  13. Ahn HK, Lee H, Kim SG, Hyun SH (2019) Pre-treatment [18F]FDG PET-based radiomics predict survival in resected non-small cell lung cancer. Clin Radiol 74:467–473. https://doi.org/10.1016/j.crad.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  14. Kirienko M, Cozzi L, Antunovic L et al (2018) Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging 45:207–217. https://doi.org/10.1007/s00259-017-3837-7

    Article  PubMed  Google Scholar 

  15. Im H-J, Pak K, Cheon GJ et al (2015) Prognostic value of volumetric parameters of 18 F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 42:241–251. https://doi.org/10.1007/s00259-014-2903-7

    Article  CAS  PubMed  Google Scholar 

  16. Dong M, Liu J, Sun X, Xing L (2017) Prognostic significance of SUV(max) on pretreatment (18) F-FDG PET/CT in early-stage non-small cell lung cancer treated with stereotactic body radiotherapy: a meta-analysis. J Med Imaging Radiat Oncol 61:652–659. https://doi.org/10.1111/1754-9485.12599

    Article  PubMed  Google Scholar 

  17. Na F, Wang J, Li C, Deng L, Xue J, Lu Y (2014) Primary tumor standardized uptake value measured on F18-fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol 9:834–842. https://doi.org/10.1097/jto.0000000000000185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Dong M, Sun X, Li W, Xing L, Yu J (2016) Prognostic value of [18F]FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One 11:e0146195. https://doi.org/10.1371/journal.pone.0146195

  19. Paesmans M, Berghmans T, Dusart M et al (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Part. J Thorac Oncol 5:612–619. https://doi.org/10.1097/JTO.0b013e3181d0a4f5

    Article  PubMed  Google Scholar 

  20. Domachevsky L, Groshar D, Galili R, Saute M, Bernstine H (2015) Survival prognostic value of morphological and metabolic variables in patients with stage I and II non-small cell lung cancer. Eur Radiol 25:3361–3367. https://doi.org/10.1007/s00330-015-3754-8

    Article  CAS  PubMed  Google Scholar 

  21. Han S, Woo S, Suh CH, Kim YJ, Oh JS, Lee JJ (2018) A systematic review of the prognostic value of texture analysis in 18 F-FDG PET in lung cancer. Ann Nucl Med 32:602–610. https://doi.org/10.1007/s12149-018-1281-9

    Article  CAS  PubMed  Google Scholar 

  22. Tello Galán MJ, García Vicente AM, Pérez Beteta J et al (2019) Global heterogeneity assessed with [18F]FDG PET/CT. Relation with biological variables and prognosis in locally advanced breast cancer. Rev Esp Med Nucl Imagen Mol (Engl Ed) 38:290–297. https://doi.org/10.1016/j.remn.2019.02.004

  23. Kirienko M, Gallivanone F, Sollini M et al (2017) FDG PET/CT as theranostic imaging in diagnosis of non-small cell lung cancer. Front Biosci (Landmark Ed) 22:1713–1723. https://doi.org/10.2741/4567

  24. Jiménez-Sánchez J, Bosque JJ, Jiménez Londoño GA et al (2021) Evolutionary dynamics at the tumor edge reveal metabolic imaging biomarkers. Proc Natl Acad Sci (U S A) 118:e2018110118. https://doi.org/10.1073/pnas.2018110118

  25. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT (2017) The eighth edition lung cancer stage classification. Chest 151:193–203. https://doi.org/10.1016/j.chest.2016.10.010

  26. Majem M, Juan O, Insa A et al (2018) SEOM clinical guidelines for the treatment of non-small cell lung cancer. Clin Transl Oncol 21(2019):3–17. https://doi.org/10.1007/s12094-018-1978-1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260. https://doi.org/10.1097/JTO.0000000000000630

    Article  PubMed  Google Scholar 

  28. Jiménez Londoño GA, Pérez-Beteta J, Bosque JJ, Honguero-Martinez AF, García Vicente AM (2020) Segmentation in non–small cell lung tumors using [18F]FDG PET/CT. Clin Nucl Med 45:e477–e482. https://doi.org/10.1097/rlu.0000000000003166

    Article  PubMed  Google Scholar 

  29. Coroller TP, Agrawal V, Huynh E et al (2017) Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC. J Thorac Oncol 12:467–476. https://doi.org/10.1016/j.jtho.2016.11.2226

    Article  PubMed  Google Scholar 

  30. Pérez-Beteta J, Molina-García D, Ortiz-Alhambra JA et al (2018) Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology. 288:218–225. https://doi.org/10.1148/radiol.2018171051

    Article  PubMed  Google Scholar 

  31. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  32. Walters S, Maringe C, Coleman MP et al (2013) Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A population-based study, 2004-2007. Thorax 68:551–564. https://doi.org/10.1136/thoraxjnl-2012-202297

  33. Luo J, Wang R, Han B et al (2017) Solid predominant histologic subtype and early recurrence predict poor postrecurrence survival in patients with stage I lung adenocarcinoma. Oncotarget 8:7050–7058. https://doi.org/10.18632/oncotarget.12540

    Article  PubMed  Google Scholar 

  34. Hung JJ, Jeng WJ, Hsu WH et al (2010) Prognostic factors of postrecurrence survival in completely resected stage I non-small cell lung cancer with distant metastasis. Thorax 65:241–245. https://doi.org/10.1136/thx.2008.110825

  35. Cho BC, De Pas T, Kalofonos H et al (2019) Prognostic Factors in Early-stage NSCLC: Analysis of the Placebo Group in the MAGRIT Study. Anticancer Res 39:1403–1409. https://doi.org/10.21873/anticanres.13255

  36. Wei S, Asamura H, Kawachi R, Sakurai H, Watanabe SI (2011) Which is the better prognostic factor for resected non-small cell lung cancer: the number of metastatic lymph nodes or the currently used nodal stage classification? J Thorac Oncol 6:310–318. https://doi.org/10.1097/JTO.0b013e3181ff9b45

    Article  PubMed  Google Scholar 

  37. Lopez Guerra JL, Gomez DR, Lin SH et al (2013) Risk factors for local and regional recurrence in patients with resected N0-N1 non-small-cell lung cancer, with implications for patient selection for adjuvant radiation therapy. Ann Oncol 24:67–74. https://doi.org/10.1093/annonc/mds274

    Article  CAS  PubMed  Google Scholar 

  38. Kiankhooy A, Taylor MD, Lapar DJ et al (2014) Predictors of early recurrence for node-negative t1 to T2B non-small cell lung cancer. Ann Thorac Surg 98:1175–1183. https://doi.org/10.1016/j.athoracsur.2014.05.061

  39. Kim K, Kim S-J, Kim I-J, Kim YS, Pak K, Kim H (2012) Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected non-small-cell lung cancer. Nucl Med Commun 33:613–620. https://doi.org/10.1097/MNM.0b013e328351d4f5

    Article  PubMed  Google Scholar 

  40. Berghmans T, Dusart M, Paesmans M et al (2008) Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lu. J Thorac Oncol 3:6–12. https://doi.org/10.1097/JTO.0b013e31815e6d6b

    Article  PubMed  Google Scholar 

  41. Hyun SH, Choi JY, Kim K et al (2013) Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non–small cell lung cancer after surgical resection. Ann Surg 257:364–370. https://doi.org/10.1097/SLA.0b013e318262a6ec

    Article  PubMed  Google Scholar 

  42. Liao S, Penney BC, Wroblewski K et al (2012) Prognostic value of metabolic tumor burden on 18 F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 39:27–38. https://doi.org/10.1007/s00259-011-1934-6

    Article  CAS  PubMed  Google Scholar 

  43. Finkle JH, Jo SY, Ferguson MK et al (2017) Risk-stratifying capacity of PET/CT metabolic tumor volume in stage IIIA non-small cell lung cancer. Eur J Nucl Med Mol Imaging 44:1275–1284. https://doi.org/10.1007/s00259-017-3659-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Park SY, Cho A, Yu WS et al (2015) Prognostic value of total lesion glycolysis by [18F]FDG PET/CT in surgically resected stage IA non–small cell lung cancer. J Nucl Med 56:45–49. https://doi.org/10.2967/jnumed.114.147561

    Article  CAS  PubMed  Google Scholar 

  45. Hyun SH, Ahn HK, Kim H et al (2014) Volume-based assessment by 18 F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:50–58. https://doi.org/10.1007/s00259-013-2530-8

    Article  CAS  PubMed  Google Scholar 

  46. Melloni G, Gajate AMS, Sestini S et al (2013) New positron emission tomography derived parameters as predictive factors for recurrence in resected stage I non-small cell lung cancer. Eur J Surg Oncol 39:1254–1261. https://doi.org/10.1016/j.ejso.2013.07.092

  47. Vesselle H, Freeman JD, Wiens L et al (2007) Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: new contrary data on prognostic role. Clin Cancer Res 13:3255–3263. https://doi.org/10.1158/1078-0432.CCR-06-1128

    Article  CAS  PubMed  Google Scholar 

  48. Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong C-YO (2010) Revisiting the prognostic value of preoperative 18 F-fluoro-2-deoxyglucose (18 F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging 37:691–698. https://doi.org/10.1007/s00259-009-1291-x

    Article  PubMed  Google Scholar 

  49. Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE, Patz EF (2008) Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. J Clin Oncol 26:1459–1464. https://doi.org/10.1200/JCO.2007.14.3628

    Article  PubMed  Google Scholar 

  50. Kurtipek E, Çayc M, Düzgün N et al (2015) [18F]FDG PET/CT mean SUV and metabolic tumor volume for mean survival time in non–small cell lung cancer. Clin Nucl Med 40:459–463. https://doi.org/10.1097/RLU.0000000000000740

    Article  PubMed  Google Scholar 

  51. Yoo IR, Chung SK, Park HL et al (2014) Prognostic value of SUVmax and metabolic tumor volume on [18F]FDG PET/CT in early stage non-small cell lung cancer patients without LN metastasis. Biomed Mater Eng 24:3091–3103. https://doi.org/10.3233/BME-141131

    Article  PubMed  Google Scholar 

  52. Lin Y, Lin W-Y, Kao C-H, Yen K-Y, Chen S-W, Yeh J-J (2012) Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer. Anticancer Res 32:5087–5091

    PubMed  Google Scholar 

  53. Grabinska K, Pelak M, Wydmanski J, Tukiendorf A, D’Amico A (2015) Prognostic value and clinical correlations of 18-fluorodeoxyglucose metabolism quantifiers in gastric cancer. World J Gastroenterol 21:5901–5909. https://doi.org/10.3748/wjg.v21.i19.5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bundschuh RA, Dinges J, Neumann L et al (2014) Textural parameters of tumor heterogeneity in [18F]FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med 55:891–897. https://doi.org/10.2967/jnumed.113.127340

  55. Apostolova I, Rogasch J, Buchert R et al (2014) Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC. BMC Cancer 14:896. https://doi.org/10.1186/1471-2407-14-896

    Article  PubMed  PubMed Central  Google Scholar 

  56. Apostolova I, Ego K, Steffen IG et al (2016) The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. Eur J Nucl Med Mol Imaging 43:2360–2373. https://doi.org/10.1007/s00259-016-3452-z

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Andrés Jiménez Londoño.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Germán Andrés Jiménez Londoño.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• retrospective

• prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez Londoño, G.A., García Vicente, A.M., Bosque, J.J. et al. SUVmax to tumor perimeter distance: a robust radiomics prognostic biomarker in resectable non-small cell lung cancer patients. Eur Radiol 32, 3889–3902 (2022). https://doi.org/10.1007/s00330-021-08523-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08523-3

Keywords

Navigation