Image quality phantoms
An abdominal anthropomorphic phantom (QRM, A PTW COMPANY) was used to assess the image quality of two examination types. The phantom mimics various tissues (muscle, liver, spleen, and vertebrae) (Fig. 1a). Due to the absence of materials with high atomic numbers, the phantom was designed to assess non-contrast CT scans. Its effective diameter of 30 cm simulates the attenuation of a patient with a weight around 75 kg. The phantom contains a hole of 10 cm in diameter into which different modules can be inserted. To mimic the detection of focal liver lesions, a first module containing hypodense low-contrast spheres of different sizes (in particular 8 and 5 mm diameter) with a contrast of 20 HU relative to the background was used (Fig. 1b). These two lesion sizes were considered clinically relevant. Indeed, liver lesions smaller than 5 mm are often benign. Furthermore, it is difficult to accurately characterize smaller lesion sizes in the liver with this type of contrast in CT [22].
A second module containing a high contrast calcic rod of 20 mm in diameter and a contrast of 200 HU was used to quantify the spatial resolution, an important aspect for assessing the detection of renal stones (Fig. 1c).
CT scanners and acquisition/reconstruction parameters
In concertation with a panel of radiologists, two sets of acquisition and reconstruction parameter settings were defined that are typical for examinations of a) focal liver lesions and b) renal stones. Five volume computed tomography dose index (CTDIvol) levels were used for each set (4, 8, 12, 16, and 20 mGy for focal liver lesions and 2, 4, 6, 10, and 15 mGy for renal stones). The current Swiss DRLs (11 mGy for focal liver lesions CT acquisitions and 6 mGy for renal stones CT acquisitions) and the underlying dose distributions [6] were used to determine the 5 CTDIvol levels, so that they cover the clinically relevant dose range.
The 12 CT scanners involved in this study are listed in Table 1. Three different CT scanners from each of the four major CT manufacturers were included. Thus, the variability of image quality due to scanner-specific technology properties could be adequately studied. In practice, there is no identical set of acquisition and reconstruction parameters that can be used on all CT scanner models. Instead, acquisition and reconstruction parameters were matched as closely as possible (Table 1). Reconstruction algorithms and reconstruction kernels are manufacturer- and model-specific.
Table 1 CT scanners and their acquisition and reconstruction settings Radiation dose assessment
Before each acquisition session, CTDIw was measured with a 10-cm ionization chamber (PTW TM30009 or Radcal 10X6-3CT) using a 32-cm-diameter CTDI phantom, following the international electrotechnical commission (IEC) standard 60601-2-44. The ratio of the measured CTDIw to the displayed CTDIw was used to correct the displayed CTDIvol of the image quality phantom scans. For the 12 CT scanners, the correction factors ranged from 0.847 to 1.057. Furthermore, the actual radiation dose depends on the z-position if the tube current is modulated. All CTDIvol values presented in the results section are corrected and refer to the actual z-position where the image quality was evaluated.
Relative standard uncertainties on the final CTDIvol values were evaluated in detail [23]. It turned out that 2.5% is a good estimate for all CT scanners and all dose levels. The most important uncertainty component was the uncertainty of the CTDIw measurements, more specifically the uncertainty of the chamber calibration factors (relative standard uncertainty of 1.5%, from calibration certificate).
Image analysis
Low-contrast detectability
We quantitatively assessed the image quality using a task-based methodology. The clinical tasks were the detection of low contrast lesions with a size of 5 and 8 mm. The low-contrast module contains four spheres of 8 mm and five spheres of 5 mm in diameter in the exact same slice. As 20 acquisitions for each dose level were acquired, we were able to extract at least 80 square regions of interest (ROIs) of 18 × 18 pixels containing lesions of 8 mm and 5 mm in diameter. On the right homogeneous part of the phantom images, 400 ROIs containing only noise were extracted in five slices around the slice of interest (Fig. 1b).
An anthropomorphic mathematical model observer was chosen to quantitatively assess the detectability of low contrast lesions. Based on Bayesian statistical decision theory, this kind of observer has the ability to mimic human observer responses in the detection of low contrast structures in an image [24,25,26]. The channelized Hotelling observer (CHO) with 10 dense difference of Gaussian channels (DDoG) was applied, following the methodology proposed by Wunderlich et al to compute the signal-to-noise ratio (SNR), expressing the detectability of the lesion [27]. The CHO model observer was previously computed using the same anthropomorphic phantom [21]. As CHO model observers are more efficient than human observers for simple detection tasks in uniform background, it is necessary to adjust the detection outcomes of model observers by adding internal noise on the covariance matrix [28]. Internal noise was calibrated with the data from the inter-comparison study of Ba et al [29]. The area under the receiver operating characteristics curve (AUC) was used as the figure of merit to assess the detectability of low contrast lesions. A monotonic function can link SNR and AUC [30]. The AUC was computed for each CT, dose level, and lesion size.
High-contrast detectability
For the detection of renal stones, we also used a task-based methodology. The clinical task was the detection of calcic lesions of 3 and 5 mm with a contrast of 450 HU. Indeed, renal stones of 3 mm and smaller have a high chance of spontaneous passage [31]. We decided to use 3 mm as a cut-off. An anthropomorphic mathematical observer, the non-prewhitening observer with an eye filter (NPWE) expressed in the Fourier domain was used. Developed by Burgess [32], the NPWE computes the SNR of simulated high contrast lesions using the in-plane contrast-dependent spatial resolution (target transfer function (TTF)) from the images of high contrast objects, the noise power spectrum (NPS), and the virtual transfer function of the human eye [33].
The TTF was computed using the module containing the high-contrast rod. As six acquisitions were performed for each CT scanner and dose level, 78 ROIs of 64 × 64 pixels centered on the rod could be extracted. The 2D TTF was calculated from the edge of the rod following the methodology described by Monnin et al and radially averaged and normalized at the zero frequency to obtain the 1D TTF [34].
Image noise was quantified by computing the NPS [35,36,37]. A total of 90 ROIs of 64 × 64 pixels were extracted from 15 homogeneous slices per acquisition. The 2D NPS was computed on the cropped ROIs and then radially averaged to obtain 1D NPS.
As the integral of 1D NPS decreases as the slice thickness increases [38], we corrected the SNR of the NPWE model for the 5 CT scanners with a 2.5 mm slice thickness by a factor \( \sqrt{\frac{3}{2.5}} \).
Statistical analysis
For the CHO model observer, to reduce the positive bias caused by the use of a finite number of images and to compute the exact 95% confidence interval of SNR, the methodology developed by Wunderlich was applied [27]. A linear fit between the logarithm of the SNR and the logarithm of the dose, taking into account the uncertainties, was performed for each CT scanner to calculate SNR and AUC values at a given CTDIvol and vice versa.
For the NPWE outcome, the uncertainties were determined using a bootstrap method. Results were computed using 100 bootstrapped samples of 50 ROIs used for TTF and NPS calculations.