Skip to main content

Advertisement

Log in

T2 mapping in gadoxetic acid-enhanced MRI: utility for predicting decompensation and death in cirrhosis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

An Editorial Comment to this article was published on 23 August 2021

Abstract

Objectives

To determine whether T2 mapping in liver MRI can predict decompensation and death in cirrhotic patients.

Methods

This retrospective study included 292 cirrhotic patients who underwent gadoxetic acid-enhanced MRI, including T1 and T2 mapping at 10-min hepatobiliary phase by using the Look-Locker and radial turbo spin-echo sequences, respectively. T1 and T2 values of the liver and spleen were measured. The association of MR parameters and serum markers with decompensation and death was investigated. Risk models combining T2Liver, serum albumin level, and Model for End-Stage Liver Disease (MELD) score were created for predicting decompensation (T2Liver, < 49.3 versus ≥ 49.3 ms) and death (< 57.4 versus ≥ 57.4 ms).

Results

In patients with compensated cirrhosis at baseline and in the full patient cohort, 9.6% (19 of 197) and 5.1% (15 of 292) developed decompensation and died during the mean follow-up periods of 18.7 and 19.2 months, respectively. A prolonged T2Liver (hazard ratio (HR), 2.59; 95% confidence interval (CI), 1.26, 5.31) was independently predictive of decompensation along with the serum albumin level (HR, 0.28; 95% CI, 0.12, 0.68) and MELD score (HR, 1.34; 95% CI, 1.08, 1.66). T2Liver (HR, 2.61; 95% CI, 1.19, 5.72) and serum albumin level (HR, 0.46; 95% CI, 0.19, 1.14) were independent predictors of death. The mean times to decompensation (12.9 versus 29.2 months) and death (16.5 versus 29.6 months) were significantly different between the high- and low-risk groups (p < 0.001).

Conclusion

T2Liver from T2 mapping can predict decompensation and death in patients with cirrhosis.

Key Points

Liver T2 values from the radial turbo spin-echo (TSE) T2 mapping sequence with tiered echo sharing and pseudo golden-angle (pGA) reordering were significantly higher in decompensated cirrhosis than compensated cirrhosis.

Liver T2 values from the radial TSE T2 mapping sequence with tiered echo sharing and pGA reordering can predict decompensation and death in patients with cirrhosis.

T2 mapping is recommended as part of liver MRI examinations for cirrhotic patients because it can provide a noninvasive prognostic marker for the development of decompensation and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

CI:

Confidence interval

CV:

Coefficient of variation

ETL:

Echo train length

HBP:

Hepatobiliary phase

HR:

Hazard ratio

ICC:

Intraclass correlation coefficient

MELD:

Model for End-Stage Liver Disease

pGA:

Pseudo golden-angle

TE:

Echo time

TR:

Repetition time

TSE:

Turbo spin-echo

VB:

Variceal bleeding

References

  1. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet 383:1749–1761

    Article  PubMed  Google Scholar 

  2. D'Amico G, Morabito A, D'Amico M et al (2018) Clinical states of cirrhosis and competing risks. J Hepatol 68:563–576

    Article  PubMed  Google Scholar 

  3. Singh S, Fujii LL, Murad MH et al (2013) Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 11:1573–1584.e1571-1572 quiz e1588-1579

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ripoll C, Groszmann R, Garcia-Tsao G et al (2007) Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 133:481–488

    Article  CAS  PubMed  Google Scholar 

  5. Ripoll C, Bari K, Garcia-Tsao G (2015) Serum albumin can identify patients with compensated cirrhosis with a good prognosis. J Clin Gastroenterol 49:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Besa C, Bane O, Jajamovich G, Marchione J, Taouli B (2015) 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function. Magn Reson Imaging 33:1075–1082

    Article  PubMed  Google Scholar 

  7. Galle PR, Forner A, Llovet JM et al (2018) EASL clinical practice guidelines: Management of hepatocellular carcinoma. J Hepatol 69:182–236

  8. Chernyak V, Fowler KJ, Kamaya A et al (2018) Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 289:816–830

    Article  PubMed  Google Scholar 

  9. Yoon JH, Lee JM, Kim E, Okuaki T, Han JK (2017) Quantitative liver function analysis: volumetric T1 mapping with fast multisection B1 inhomogeneity correction in hepatocyte-specific contrast-enhanced liver MR imaging. Radiology 282:408–417

    Article  PubMed  Google Scholar 

  10. Kim JE, Kim HO, Bae K, Choi DS, Nickel D (2019) T1 mapping for liver function evaluation in gadoxetic acid-enhanced MR imaging: comparison of look-locker inversion recovery and B1 inhomogeneity-corrected variable flip angle method. Eur Radiol 29:3584–3594

    Article  PubMed  Google Scholar 

  11. Hinoshita E, Taguchi K, Inokuchi A et al (2001) Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. J Hepatol 35:765–773

    Article  CAS  PubMed  Google Scholar 

  12. Lagadec M, Doblas S, Giraudeau C et al (2015) Advanced fibrosis: Correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology 274:379–386

    Article  PubMed  Google Scholar 

  13. Haimerl M, Verloh N, Zeman F et al (2013) Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI. PLoS One 8:e85658

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kreft B, Dombrowski F, Block W, Bachmann R, Pfeifer U, Schild H (1999) Evaluation of different models of experimentally induced liver cirrhosis for MRI research with correlation to histopathologic findings. Invest Radiol 34:360–366

    Article  CAS  PubMed  Google Scholar 

  15. Aubé C, Moal F, Oberti F et al (2007) Diagnosis and measurement of liver fibrosis by MRI in bile duct ligated rats. Dig Dis Sci 52:2601–2609

    Article  PubMed  Google Scholar 

  16. Chow AM, Gao DS, Fan SJ et al (2012) Measurement of liver T(1) and T(2) relaxation times in an experimental mouse model of liver fibrosis. J Magn Reson Imaging 36:152–158

    Article  PubMed  Google Scholar 

  17. Luetkens JA, Klein S, Traber F et al (2018) Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: preclinical results. Radiology 288:748–754

    Article  PubMed  Google Scholar 

  18. Altbach MI, Outwater EK, Trouard TP et al (2002) Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 16:179–189

    Article  PubMed  Google Scholar 

  19. Altbach MI, Bilgin A, Li Z, Clarkson EW, Trouard TP, Gmitro AF (2005) Processing of radial fast spin-echo data for obtaining T2 estimates from a single k-space data set. Magn Reson Med 54:549–559

    Article  PubMed  Google Scholar 

  20. Natsuaki Y, Keerthisavan M, Bilgin A et al (2017) Flexible and efficient 2D radial TSE T2 mapping with tiered echo sharing and with “pseudo” golden-angle ratio reordering. Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, Hawaii, USA

  21. Heye T, Yang SR, Bock M et al (2012) MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 22:1224–1232

    Article  PubMed  Google Scholar 

  22. Cassinotto C, Feldis M, Vergniol J et al (2015) MR relaxometry in chronic liver diseases: comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur J Radiol 84:1459–1465

    Article  PubMed  Google Scholar 

  23. Guimaraes AR, Siqueira L, Uppal R et al (2016) T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 6:103–114

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoffman DH, Ayoola A, Nickel D, Han F, Chandarana H, Shanbhogue KP (2020) T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY) 45:692–700

    Article  Google Scholar 

  25. Mesropyan N, Kupczyk P, Dold L et al (2020) Non-invasive assessment of liver fibrosis in autoimmune hepatitis: diagnostic value of liver magnetic resonance parametric mapping including extracellular volume fraction. Abdom Radiol (NY). https://doi.org/10.1007/s00261-020-02822-x

  26. Yoon JH, Lee JM, Paek M, Han JK, Choi BI (2016) Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging. Eur Radiol 26:1775–1782

    Article  PubMed  Google Scholar 

  27. Barnhart HX, Barboriak DP (2009) Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol 2:231–235

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heinze G, Dunkler D (2017) Five myths about variable selection. Transpl Int 30:6–10

    Article  PubMed  Google Scholar 

  30. atcheva KP, Lee M, McCormick JB, Rahbar MH (2016) Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology (Sunnyvale) 6:227 https://doi.org/10.4172/2161-1165.1000227

  31. Kenneth P, Burnham DRA (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  32. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  33. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dekkers IA, Lamb HJ (2018) Clinical application and technical considerations of T(1) & T(2)(*) mapping in cardiac, liver, and renal imaging. Br J Radiol 91:20170825

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yoon JH, Lee JM, Kang HJ et al (2019) Quantitative assessment of liver function by using gadoxetic acid-enhanced MRI: hepatocyte uptake ratio. Radiology 290:125–133

    Article  PubMed  Google Scholar 

  36. Lee JK, Glazer HS (1990) Controversy in the MR imaging appearance of fibrosis. Radiology 177:21–22

    Article  CAS  PubMed  Google Scholar 

  37. Ishiguro S, Inoue M, Tanaka Y, Mizokami M, Iwasaki M, Tsugane S (2009) Serum aminotransferase level and the risk of hepatocellular carcinoma: a population-based cohort study in Japan. Eur J Cancer Prev 18:26–32

    Article  CAS  PubMed  Google Scholar 

  38. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  CAS  PubMed  Google Scholar 

  39. Angeli P, Bernardi M, Villanueva C et al (2018) EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol 69:406–460

  40. Giri S, Chung YC, Merchant A et al (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim HJ, Lee HW (2013) Important predictor of mortality in patients with end-stage liver disease. Clin Mol Hepatol 19:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chamuleau RA, Creyghton JH, De Nie I, Moerland MA, Van der Lende OR, Smidt J (1988) Is the magnetic resonance imaging proton spin-lattice relaxation time a reliable noninvasive parameter of developing liver fibrosis? Hepatology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  43. Pavlides M, Banerjee R, Sellwood J et al (2016) Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol 64:308–315

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim KA, Park MS, Kim IS et al (2012) Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation. J Magn Reson Imaging 36:405–410

    Article  PubMed  Google Scholar 

  45. D'Amico G, Garcia-Tsao G, Pagliaro L (2006) Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 44:217–231

    Article  PubMed  Google Scholar 

  46. Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  47. Körzdörfer G, Kirsch R, Liu K et al (2019) Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology 292:429–437

    Article  PubMed  Google Scholar 

  48. Hanson CA, Kamath A, Gottbrecht M, Ibrahim S, Salerno M (2020) T2 relaxation times at cardiac MRI in healthy adults: a systematic review and meta-analysis. Radiology. https://doi.org/10.1148/radiol.2020200989:200989

Download references

Acknowledgements

We acknowledge Professor Rock Bum Kim in Regional Cardiocerebrovascular Disease Center, Gyeongsang National University Hospital, Jinju, Republic of Korea, for statistical advice for this manuscript.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Eun Kim.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Professor Ji Eun Kim in Department of Radiology, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.

Conflict of interest

Two of the authors (Fei Han, Marcel Dominik Nickel) are employees of Siemens Healthcare. The rest of the authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Professor Rock Bum Kim in Regional Cardiocerebrovascular Disease Center, Gyeongsang National University Hospital, Jinju, Republic of Korea, kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Diagnostic or prognostic study

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Kim, J.E., Choi, H.C. et al. T2 mapping in gadoxetic acid-enhanced MRI: utility for predicting decompensation and death in cirrhosis. Eur Radiol 31, 8376–8387 (2021). https://doi.org/10.1007/s00330-021-07805-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07805-0

Keywords

Navigation