Skip to main content
Log in

MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate hepatic relaxation times T1, T2 and T2* in healthy subjects and patients with liver cirrhosis stratified by the Child-Pugh classification (CPC).

Methods

Sixty-one consecutive patients were stratified by CPC (class A = 26; B = 20; C = 15) and compared with age-matched controls (n = 31). Relaxometry measurements were performed at 1.5 T using six saturation recovery times (200–3,000 ms) to determine liver T1, six echo times (TE 14–113 ms) for T2 and eight TE (4.8–38 ms) for T2* assessment. Signal intensities in selected regions of interest in the liver parenchyma were fitted to theoretical models with least squares minimisation algorithms to determine T1, T2 and T2*.

Results

The most significant difference was the higher T1 values (852 ± 132 ms) in cirrhotic livers compared with controls (678 ± 45 ms, P < 0.0001). A less significant difference was seen for T2* (23 ± 5 vs. 26 ± 7 ms). Subdifferentiation showed a statistically significant difference between control group and individual CPC classes as well as between class C and classes A or B for T1 relaxation times.

Conclusion

Measurement of T1 relaxation time can differentiate healthy subjects from patients with liver cirrhosis, and can distinguish between mild/moderate disease (CPC A/B) and advanced disease (CPC C).

Key Points

Significantly elevated magnetic resonance T1 relaxation times are found in liver cirrhosis.

T1 relaxation times can distinguish healthy subjects from patients with liver cirrhosis.

T1 relaxation times can distinguish Child–Pugh classes A and B from C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2004) The global burden of disease: 2004 update. WHO Press, Geneva

  2. Bolanos-Meade J, Lopez-Arvizu C (2000) Histologic improvement of fibrosis in patients with hepatitis C and sustained response to interferon therapy. Ann Intern Med 133:312

    PubMed  CAS  Google Scholar 

  3. Dixon JB, Bhathal PS, Hughes NR, O’Brien PE (2004) Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology 39:1647–1654

    Article  PubMed  Google Scholar 

  4. Farci P, Roskams T, Chessa L et al (2004) Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology 126:1740–1749

    Article  PubMed  CAS  Google Scholar 

  5. Friedman SL, Bansal MB (2006) Reversal of hepatic fibrosis – fact or fantasy? Hepatology 43:S82–S88

    Article  PubMed  CAS  Google Scholar 

  6. Davis GL, Roberts WL (2010) The healthcare burden imposed by liver disease in aging Baby Boomers. Curr Gastroenterol Rep 12:1–6

    Article  PubMed  Google Scholar 

  7. Strauss E (2010) Usefulness of liver biopsy in chronic hepatitis C. Ann Hepatol 9(Suppl):39–42

    PubMed  Google Scholar 

  8. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD (2009) Liver biopsy. Hepatology 49:1017–1044

    Article  PubMed  Google Scholar 

  9. Pinzani M, Rombouts K, Colagrande S (2005) Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol 42(Suppl):S22–S36

    Article  PubMed  Google Scholar 

  10. Castera L, Pinzani M (2010) Non-invasive assessment of liver fibrosis: are we ready? Lancet 375:1419–1420

    Article  PubMed  Google Scholar 

  11. Castera L, Pinzani M (2010) Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut 59:861–866

    Article  PubMed  Google Scholar 

  12. Parkes J, Roderick P, Harris S et al (2010) Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut 59:1245–1251

    Article  PubMed  CAS  Google Scholar 

  13. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP (2010) Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 59:1265–1269

    Article  PubMed  Google Scholar 

  14. Vizzutti F, Arena U, Nobili V et al (2009) Non-invasive assessment of fibrosis in non-alcoholic fatty liver disease. Ann Hepatol 8:89–94

    PubMed  Google Scholar 

  15. Molleken C, Sitek B, Henkel C et al (2009) Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology 49:1257–1266

    Article  PubMed  Google Scholar 

  16. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50:17–35

    Article  PubMed  Google Scholar 

  17. Hosch W, Bock M, Libicher M et al (2007) MR-relaxometry of myocardial tissue: significant elevation of T1 and T2 relaxation times in cardiac amyloidosis. Invest Radiol 42:636–642

    Article  PubMed  Google Scholar 

  18. Wang YX, Yuan J, Chu ES et al (2011) T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology 259:712–719

    Article  PubMed  Google Scholar 

  19. Lee MJ, Kim MJ, Yoon CS, Han SJ, Park YN (2011) Evaluation of liver fibrosis with T2 relaxation time in infants with cholestasis: comparison with normal controls. Pediatr Radiol 41:350–354

    Article  PubMed  Google Scholar 

  20. Keevil SF, Alstead EM, Dolke G, Brooks AP, Armstrong P, Farthing MJ (1994) Non-invasive assessment of diffuse liver disease by in vivo measurement of proton nuclear magnetic resonance relaxation times at 0.08T. Br J Radiol 67:1083–1087

    Article  PubMed  CAS  Google Scholar 

  21. Thomsen C, Christoffersen P, Henriksen O, Juhl E (1990) Prolonged T1 in patients with liver cirrhosis: an in vivo MRI study. Magn Reson Imaging 8:599–604

    Article  PubMed  CAS  Google Scholar 

  22. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni McWilliams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649

    Article  PubMed  CAS  Google Scholar 

  23. Bock M, Schulz J, Ueltzhoeffer S, Giesel F, Voth M, Essig M (2008) Intravascular contrast agent T1 shortening: fast T1 relaxometry in a carotid volunteer study. MAGMA 21:363–368

    Article  PubMed  Google Scholar 

  24. Wacker CM, Bock M, Hartlep AW et al (1999) Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements. Magn Reson Med 41:686–695

    Article  PubMed  CAS  Google Scholar 

  25. Bauer WR, Nadler W, Bock M et al (1999) Theory of coherent and incoherent nuclear spin dephasing in the heart. Phys Rev Lett 83:4215–4218

    Article  CAS  Google Scholar 

  26. de Certaines JD, Henriksen O, Spisni A, Cortsen M, Ring PB (1993) In vivo measurements of proton relaxation times in human brain, liver, and skeletal muscle: a multicenter MRI study. Magn Reson Imaging 11:841–850

    Article  PubMed  Google Scholar 

  27. Lerski RA, McRobbie DW, Straughan K, Walker PM, de Certaines JD, Bernard AM (1988) Multi-center trial with protocols and prototype test objects for the assessment of MRI equipment. EEC Concerted Research Project. Magn Reson Imaging 6:201–214

    Article  PubMed  CAS  Google Scholar 

  28. Henriksen O, de Certaines JD, Spisni A, Cortsen M, Muller RN, Ring PB (1993) In vivo field dependence of proton relaxation times in human brain, liver and skeletal muscle: a multicenter study. Magn Reson Imaging 11:851–856

    Article  PubMed  CAS  Google Scholar 

  29. Bernardino ME, Small W, Goldstein J et al (1983) Multiple NMR T2 relaxation values in human liver tissue. AJR Am J Roentgenol 141:1203–1208

    PubMed  CAS  Google Scholar 

  30. Chamuleau RA, Creyghton JH, De Nie I, Moerland MA, Van der Lende OR, Smidt J (1988) Is the magnetic resonance imaging proton spin-lattice relaxation time a reliable noninvasive parameter of developing liver fibrosis? Hepatology 8:217–221

    Article  PubMed  CAS  Google Scholar 

  31. Katsube T, Okada M, Kumano S et al (2011) Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol 46:277–283

    Article  PubMed  Google Scholar 

  32. Castera L, Sebastiani G, Le Bail B, de Ledinghen V, Couzigou P, Alberti A (2010) Prospective comparison of two algorithms combining non-invasive methods for staging liver fibrosis in chronic hepatitis C. J Hepatol 52:191–198

    Article  PubMed  Google Scholar 

  33. Kim SU, Han KH, Ahn SH (2010) Non-invasive assessment of liver fibrosis: time to move from cross-sectional studies to longitudinal ones. J Gastroenterol Hepatol 25:1472–1473

    Article  PubMed  CAS  Google Scholar 

  34. Boursier J, Cesbron E, Tropet AL, Pilette C (2009) Comparison and improvement of MELD and Child-Pugh score accuracies for the prediction of 6-month mortality in cirrhotic patients. J Clin Gastroenterol 43:580–585

    Article  PubMed  Google Scholar 

  35. Shaikh S, Ghani H, Memon S, Baloch GH, Jaffery M, Shaikh K (2010) MELD era: is this time to replace the original Child-Pugh score in patients with decompensated cirrhosis of liver. J Coll Physicians Surg Pak 20:432–435

    PubMed  Google Scholar 

  36. Foucher J, Chanteloup E, Vergniol J et al (2006) Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut 55:403–408

    Article  PubMed  CAS  Google Scholar 

  37. Hashimoto K, Murakami T, Dono K et al (2006) Assessment of the severity of liver disease and fibrotic change: the usefulness of hepatic CT perfusion imaging. Oncol Rep 16:677–683

    PubMed  Google Scholar 

Download references

Acknowledgements

H.U. Kauczor is a consultant for the General Electric Company and received funding for this research from Siemens AG and Boehringer Ingelheim GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Heye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heye, T., Yang, SR., Bock, M. et al. MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 22, 1224–1232 (2012). https://doi.org/10.1007/s00330-012-2378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2378-5

Keywords

Navigation