Skip to main content

Advertisement

Log in

Iso- or hyperintensity of hepatocellular adenomas on hepatobiliary phase does not always correspond to hepatospecific contrast-agent uptake: importance for tumor subtyping

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted in order to evaluate if iso- or hyperintensity of HCAs on HBP is systematically related to a high uptake of hepatospecific contrast agent, using a quantitative approach.

Methods

This bicentric retrospective study included all patients with histologically confirmed and subtyped HCA from 2009 to 2017 who underwent MRI with HBP after Gd-BOPTA injection and who showed iso- or hyperintensity on HBP. The signal intensity of tumors on pre- and postcontrast images and the presence of hepatic steatosis were noted. Contrast uptake on HBP was quantified using the liver-to-lesion contrast enhancement ratio (LLCER) and compared between HCA subtypes (Wilcoxon signed-rank test). Categorical variables were compared using chi-square tests.

Results

Twenty-four HCAs showed iso- or hyperintensity on HBP, specifically 17 inflammatory (IHCAs) and 7 β-catenin HCAs (BHCAs). Eighteen HCAs (75%) (17 IHCAs and 1 BHCAs) had a LLCER < 0% (median − 13.6%, group 1), of which 94% were hyperintense on precontrast T1-W images, with background hepatic steatosis. Six HCAs (25%) had LLCER ≥ 0% (median 2.9%, group 2), and all were BHCAs. A LLCER ≥ 1.6% was associated with the diagnosis of BHCA with a sensitivity of 86% and a specificity of 100%.

Conclusion

In conclusion, iso- or hyperintensity of hepatocellular adenomas on HBP does not necessarily correspond to an increased hepatospecific contrast-agent uptake. In IHCA, tumor hyperintensity on precontrast images and the underlying steatosis likely explain such iso- or hyperintensity, which do show reduced HBP contrast-agent uptake. On the other hand, marked contrast uptake can be observed, especially in BHCA.

Key Points

• Iso- or hyperintensity on HBP does not necessarily reflect a high uptake of hepatospecific contrast agent.

• Discrepancies between qualitative signal intensity and quantitative hepatospecific contrast uptake can be explained in IHCA by a combination of tumor hyperintensity on precontrast images and underlying hepatic steatosis.

• In BHCA, iso- or hyperintensity on HBP does actually correspond to a greater contrast uptake than that of the liver, demonstrated by an increased lesion-to-liver contrast enhancement ratio (LLCER).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BHCA:

β-Catenin-mutated hepatocellular adenoma

FNH:

Focal nodular hyperplasia

HBP:

Hepatobiliary phase

HCA:

Hepatocellular adenoma

HHCA:

HNF1-α-inactivated HCA

IHCA:

Inflammatory HCA

LLCER:

Liver-to-lesion contrast enhancement ratio

OATP:

Organic anion transporting polypeptide

SI:

Signal intensity

SIR:

Signal intensity ratio

References

  1. Edmondson HA, Henderson B, Benton B (1976) Liver-cell adenomas associated with use of oral contraceptives. N Engl J Med 294:470–472. https://doi.org/10.1056/NEJM197602262940904

    Article  CAS  PubMed  Google Scholar 

  2. Nault JC, Bioulac-Sage P, Zucman-Rossi J (2013) Hepatocellular benign tumors—from molecular classification to personalized clinical care. Gastroenterology 144:888–902. https://doi.org/10.1053/j.gastro.2013.02.032

    Article  CAS  PubMed  Google Scholar 

  3. Belghiti J, Cauchy F, Paradis V, Vilgrain V (2014) Diagnosis and management of solid benign liver lesions. Nat Rev Gastroenterol Hepatol 11:737–749. https://doi.org/10.1038/nrgastro.2014.151

    Article  CAS  PubMed  Google Scholar 

  4. European Association for the Study of the Liver (EASL) (2016) EASL clinical practice guidelines on the management of benign liver tumours. J Hepatol 65:386–398. https://doi.org/10.1016/j.jhep.2016.04.001

    Article  Google Scholar 

  5. Nault JC, Paradis V, Cherqui D, Vilgrain V, Zucman-Rossi J (2017) Molecular classification of hepatocellular adenoma in clinical practice. J Hepatol 67:1074–1083. https://doi.org/10.1016/j.jhep.2017.07.009

  6. Dokmak S, Paradis V, Vilgrain V et al (2009) A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas. Gastroenterology 137:1698–1705. https://doi.org/10.1053/j.gastro.2009.07.061

    Article  PubMed  Google Scholar 

  7. Farges O, Ferreira N, Dokmak S, Belghiti J, Bedossa P, Paradis V (2011) Changing trends in malignant transformation of hepatocellular adenoma. Gut 60:85–89. https://doi.org/10.1136/gut.2010.222109

  8. Nault JC, Couchy G, Balabaud C et al (2017) Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology 152:880–894.e6. https://doi.org/10.1053/j.gastro.2016.11.042

    Article  CAS  PubMed  Google Scholar 

  9. Lewin M, Handra-Luca A, Arrivé L et al (2006) Liver adenomatosis: classification of MR imaging features and comparison with pathologic findings. Radiology 241:433–440. https://doi.org/10.1148/radiol.2412051243

    Article  PubMed  Google Scholar 

  10. Laumonier H, Bioulac-Sage P, Laurent C, Zucman-Rossi J, Balabaud C, Trillaud H (2008) Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology 48:808–818. https://doi.org/10.1002/hep.22417

  11. Ronot M, Bahrami S, Calderaro J et al (2011) Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification. Hepatology 53:1182–1191. https://doi.org/10.1002/hep.24147

    Article  PubMed  Google Scholar 

  12. Ronot M, Vilgrain V (2014) Imaging of benign hepatocellular lesions: current concepts and recent updates. Clin Res Hepatol Gastroenterol 38:681–688. https://doi.org/10.1016/j.clinre.2014.01.014

    Article  PubMed  Google Scholar 

  13. Kreft BP, Baba Y, Tanimoto A, Finn JP, Stark DD (1993) Orally administered manganese chloride: enhanced detection of hepatic tumors in rats. Radiology 186:543–548. https://doi.org/10.1148/radiology.186.2.8421762

  14. Ni Y, Marchal G, Yu J, Mühler A, Lukito G, Baert AL (1994) Prolonged positive contrast enhancement with Gd-EOB-DTPA in experimental liver tumors: potential value in tissue characterization. J Magn Reson Imaging 4:355–363

  15. Ni Y, Marchal G (1998) Enhanced magnetic resonance imaging for tissue characterization of liver abnormalities with hepatobiliary contrast agents: an overview of preclinical animal experiments. Top Magn Reson Imaging 9:183–195

    Article  CAS  PubMed  Google Scholar 

  16. Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177. https://doi.org/10.1148/radiol.2361040338

    Article  PubMed  Google Scholar 

  17. Grazioli L, Bondioni MP, Haradome H et al (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529. https://doi.org/10.1148/radiol.11101742

    Article  PubMed  Google Scholar 

  18. Bieze M, van den Esschert JW, Nio CY et al (2012) Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. AJR Am J Roentgenol 199:26–34. https://doi.org/10.2214/AJR.11.7750

    Article  PubMed  Google Scholar 

  19. Suh CH, Kim KW, Kim GY, Shin YM, Kim PN, Park SH (2015) The diagnostic value of Gd-EOB-DTPA-MRI for the diagnosis of focal nodular hyperplasia: a systematic review and meta-analysis. Eur Radiol 25:950–960. https://doi.org/10.1007/s00330-014-3499-9

  20. Neri E, Bali MA, Ba-Ssalamah A et al (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921–931. https://doi.org/10.1007/s00330-015-3900-3

    Article  CAS  PubMed  Google Scholar 

  21. Merkle EM, Zech CJ, Bartolozzi C et al (2016) Consensus report from the 7th international forum for liver magnetic resonance imaging. Eur Radiol 26:674–682. https://doi.org/10.1007/s00330-015-3873-2

    Article  PubMed  Google Scholar 

  22. Ba-Ssalamah A, Antunes C, Feier D et al (2015) Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid-enhanced MR imaging. Radiology 277:104–113. https://doi.org/10.1148/radiol.2015142366

    Article  PubMed  Google Scholar 

  23. Agarwal S, Fuentes-Orrego JM, Arnason T et al (2014) Inflammatory hepatocellular adenomas can mimic focal nodular hyperplasia on gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 203:W408–W414. https://doi.org/10.2214/AJR.13.12251

    Article  PubMed  Google Scholar 

  24. Thomeer MG, Willemssen FE, Biermann KK et al (2014) MRI features of inflammatory hepatocellular adenomas on hepatocyte phase imaging with liver-specific contrast agents. J Magn Reson Imaging 39:1259–1264. https://doi.org/10.1002/jmri.24281

    Article  PubMed  Google Scholar 

  25. Tse JR, Naini BV, Lu DSK, Raman SS (2016) Qualitative and quantitative gadoxetic acid-enhanced MR imaging helps subtype hepatocellular adenomas. Radiology 279:118–127. https://doi.org/10.1148/radiol.2015142449

    Article  PubMed  Google Scholar 

  26. Glockner JF, Lee CU, Mounajjed T (2017) Inflammatory hepatic adenomas: characterization with hepatobiliary MRI contrast agents. Magn Reson Imaging 47:103–110. https://doi.org/10.1016/j.mri.2017.12.006

    Article  PubMed  Google Scholar 

  27. Yoneda N, Matsui O, Kitao A et al (2016) Benign hepatocellular nodules: hepatobiliary phase of gadoxetic acid-enhanced MR imaging based on molecular background. Radiographics 36:2010–2027. https://doi.org/10.1148/rg.2016160037

    Article  PubMed  Google Scholar 

  28. Reizine E, Amaddeo G, Pigneur F et al (2018) Quantitative correlation between uptake of Gd-BOPTA on hepatobiliary phase and tumor molecular features in patients with benign hepatocellular lesions. Eur Radiol. https://doi.org/10.1007/s00330-018-5438-7

  29. Yoneda N, Matsui O, Kitao A et al (2012) Beta-catenin-activated hepatocellular adenoma showing hyperintensity on hepatobiliary-phase gadoxetic-enhanced magnetic resonance imaging and overexpression of OATP8. Jpn J Radiol 30:777–782. https://doi.org/10.1007/s11604-012-0115-2

    Article  CAS  PubMed  Google Scholar 

  30. Roux M, Pigneur F, Calderaro J et al (2015) Differentiation of focal nodular hyperplasia from hepatocellular adenoma: role of the quantitative analysis of gadobenate dimeglumine-enhanced hepatobiliary phase MRI. J Magn Reson Imaging 42:1249–1258. https://doi.org/10.1002/jmri.24897

    Article  PubMed  Google Scholar 

  31. Fléjou JF (2011) WHO classification of digestive tumors: the fourth edition. Ann Pathol 31:S27–S31. https://doi.org/10.1016/j.annpat.2011.08.001

    Article  PubMed  Google Scholar 

  32. Zucman-Rossi J, Jeannot E, Nhieu JT et al (2006) Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43:515–524. https://doi.org/10.1002/hep.21068

    Article  CAS  PubMed  Google Scholar 

  33. Bioulac-Sage P, Laumonier H, Couchy G et al (2009) Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 50:481–489. https://doi.org/10.1002/hep.22995

    Article  PubMed  Google Scholar 

  34. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474. https://doi.org/10.1111/j.1572-0241.1999.01377.x

  35. Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29:231–260. https://doi.org/10.1148/rg.291075123

  36. van Aalten SM, Thomeer MGJ, Terkivatan T et al (2011) Hepatocellular adenomas: correlation of MR imaging findings with pathologic subtype classification. Radiology 261:172–181. https://doi.org/10.1148/radiol.11110023

    Article  PubMed  Google Scholar 

  37. Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087. https://doi.org/10.1016/j.jhep.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  38. Thomeer MG, E Bröker ME, de Lussanet Q et al (2014) Genotype-phenotype correlations in hepatocellular adenoma: an update of MRI findings. Diagn Interv Radiol 20:193–199. https://doi.org/10.5152/dir.2013.13315

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thomeer MG, Gest B, van Beek H et al (2018) Quantitative analysis of hepatocellular adenoma and focal nodular hyperplasia in the hepatobiliary phase: external validation of LLCER method using gadobenate dimeglumine as contrast agent. J Magn Reson Imaging 47:860–861. https://doi.org/10.1002/jmri.25789

    Article  PubMed  Google Scholar 

  40. Roux M, Pigneur F, Luciani A (2018) Response to “Quantitative analysis of hepatocellular adenoma and focal nodular hyperplasia in the hepatobiliary phase: external validation of llcer method using gadobenate dimeglumine as contrast agent”. J Magn Reson Imaging 47:862–863. https://doi.org/10.1002/jmri.25788

    Article  PubMed  Google Scholar 

  41. Hata H, Inoue Y, Nakajima A, Komi S, Miyatake H (2017) Influence of the magnetic field strength on image contrast in Gd-EOB-DTPA-enhanced MR imaging: comparison between 1.5T and 3.0T. Magn Reson Med Sci 16:109–114. https://doi.org/10.2463/mrms.mp.2015-0158

  42. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

  43. Pascolo L, Cupelli F, Anelli PL et al (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257:746–752. https://doi.org/10.1006/bbrc.1999.0454

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Ronot.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Maxime Ronot.

Conflict of interest

The authors declare that they have no conflict of interest.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in a previous manuscript in the European Radiology focusing on a correlation between the quantitative analysis of benign hepatocellular tumor uptake on HBP imaging and the quantitative level of OATP expression [28].

Methodology

• retrospective

• diagnostic or prognostic study

• multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reizine, E., Ronot, M., Pigneur, F. et al. Iso- or hyperintensity of hepatocellular adenomas on hepatobiliary phase does not always correspond to hepatospecific contrast-agent uptake: importance for tumor subtyping. Eur Radiol 29, 3791–3801 (2019). https://doi.org/10.1007/s00330-019-06150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06150-7

Keywords

Navigation